
Automatic Non-termination Analysis
of Imperative Programs

Helga Velroyen

Diploma Thesis

in Computer Science

RWTH Aachen University
Research Group Computer Science II

Programming Languages and Verification

October 2007

Examiner:

Prof. Dr. Jürgen Giesl,
RWTH Aachen University, Germany

Prof. Dr. Reiner Hähnle,
Chalmers University of Technology Gothenburg, Sweden

Supervisor:

Philipp Rümmer,
Chalmers University of Technology Gothenburg, Sweden

3

Hiermit versichere ich, dass ich die Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

Aachen, den 8. Oktober 2007

Helga Velroyen

5

Abstract

Software which runs into an infinite loop and thus does
not terminate can become a serious problem in real-
life software-systems. In this work we developed an
algorithm to detect infinite loops in imperative pro-
grams. This algorithm uses invariants to prove the non-
termination of the target program.

We implemented a software which uses a theorem prover
for Dynamic Logic to generate and refine invariants in-
crementally. The software examines programs of a sim-
ple imperative language and works fully automatic. The
software was tested on a set of example programs and
these tests were successful. We applied the algorithm
also on example programs of a object-oriented language
and obtained promising results here, too.

To our knowledge, our work is the first algorithm and
implementation of a method to prove non-termination
of imperative programs.

For M. Lintermanns.

Acknowledgements

I like to thank Prof. Dr. Reiner Hähnle for giving me the opportunity to write my
thesis in his research group, the KeY group. My supervisor Philipp Rümmer is a
member of this group and I thank him for his constructive and qualified feedback, the
proofreading of my drafts and his support during the implementation. I like to thank
my colleagues of the KeY group, in particular Mattias Ulbrich for contributing
the Takeshi example, Benjamin Weiss for the collaboration concerning external
invariant generators, Richard Bubel for his occasional help with KeY and Marcus
Baum for his entertaining company in our office.

I thank Prof. Dr. Jürgen Giesl for reviewing my thesis for the RWTH Aachen
University and his colleagues of the Research Group Computer Science II, who gave
me helpful feedback at my talks.

I like to thank all people who gave me helpful hints to sources for examples and
in particular Juri Ganitkevitch who provided the ChaosBuffer example.

There are several people who gave me constructive feedback concerning this
document. In particular, I like to thank Tobias Weyand, Petra Welter, Philipp
Vorst and Matthias Höller for proofreading parts of my thesis concerning content
and style. In particular, I thank Bernd Hauchwitz for reading my complete thesis
concerning English grammar and style. I thank Sebastian Stigler for sharing his
LATEX skills.

I thank Jens Forster for his support in resolving the administrative issues which
I faced when I planned to write my thesis abroad.

I love to thank my partner Sumedha Widyadharma for simply being there when-
ever I needed him. In addition, I thank him for his occasional help concerning
technical problems.

Ich danke meinen Eltern Brigitte und Konrad Velroyen dafür, dass sie mich in
meinem Studium unterstützen und insbesondere dafür, dass sie es mir ermöglichten,
meine Diplomarbeit in Schweden zu schreiben.

Ett stort tack till Pernilla Sjöqvist och Mattias Svensson som var min värdfamilj
under min tid i Sverige och som lät mig vara en del av deras hem och familj.

9

10

Contents

1 Introduction 15

2 Non-termination of Programs 19
2.1 Imperative Programs and their States 19
2.2 Non-termination of Programs . 19
2.3 Causes of Non-termination . 20
2.4 The Objective of Non-termination Detection 20
2.5 Invariants to Prove Non-termination 21
2.6 Invariant Refinement using Failed Proofs 22

3 Foundations 25
3.1 While Programs . 25

3.1.1 Elements of While Programs 25
3.1.2 Comparison of While and Java Programs 26

3.2 While Dynamic Logic . 27
3.2.1 Syntax of While DL . 27
3.2.2 Semantics of While . 34

3.3 While DL Calculus . 41
3.3.1 Calculus Rules . 43
3.3.2 Particular Calculus Rules for Loops 47
3.3.3 Example Proof . 52
3.3.4 Properties of the Calculus . 58

3.4 Incremental Closure of Proofs . 58
3.4.1 Existentially Quantified Formulae and Metavariables 58
3.4.2 Incremental Closure of Proofs 60

3.5 KeY . 64

4 Non-termination in Dynamic Logic 67
4.1 Expressing Non-termination . 67

4.1.1 Non-termination versus Very Long Calculations 68
4.1.2 Stating the Existence of Critical Inputs 69

4.2 Non-termination Proofs . 70
4.2.1 Interpretation of Successful Non-termination Proofs 71
4.2.2 Interpretation of Failed Non-termination Proofs 71

4.3 Inverse Ranking Terms . 73

11

12 CONTENTS

4.4 Different Kinds of Invariants . 75

5 Algorithm 77
5.1 General Idea of the Algorithm . 77
5.2 Inner Workings of the Invariant Generator 85

5.2.1 Creation of Invariants Candidates 85
5.2.2 Filtering of Invariant Candidates 90
5.2.3 Scoring of Invariant Candidates 92

5.3 Soundness and Completeness . 96
5.4 The Algorithm for Nested Loops . 96

5.4.1 Transformation into Unnested Loops 96
5.4.2 Examination of Inner Loops Separately 96

6 Implementation of the Algorithm 101
6.1 Used Technology and Technical Requirements 101
6.2 Design . 101

6.2.1 Creation of Invariant Candidates 102
6.2.2 Filtering of Invariant Candidates 103
6.2.3 Scoring of Invariant Candidates 104
6.2.4 Other Components . 105

6.3 Preparations of the Input Programs 106
6.4 Interaction with the Theorem Prover 106
6.5 User Interaction . 107
6.6 Issues during the Development . 107

7 Experiments 109
7.1 Sample Database . 109
7.2 Setup for the Experiments . 110
7.3 Overview over the Results . 110
7.4 Discussion of Examples with Positive Result 116
7.5 Issues and their solutions . 119
7.6 Discussion of Difficult Examples . 120
7.7 Suggestions for Improvements . 122
7.8 Summarizing Evaluation of the Experiments 124

8 Non-termination Analysis of Heap Programs 127
8.1 Heap Programs . 127
8.2 Heap Dynamic Logic . 128

8.2.1 Object-Orientation in Dynamic Logic 128
8.2.2 Syntax of Heap DL . 131
8.2.3 Semantics of Heap DL . 135

8.3 Heap DL Calculus . 137
8.4 Non-termination Analysis of Examples 140

8.4.1 Note on Abrupt Termination 140
8.4.2 Example ArraySum . 141
8.4.3 Example ChaosBuffer . 143

CONTENTS 13

8.4.4 Example Traverse . 145
8.4.5 Example Takeshi . 147
8.4.6 Evaluation of the Algorithm for Heap Programs 149

9 Summary and Conclusion 151
9.1 Related Work . 152
9.2 Future Work . 154

A While Programs Database 157

14 CONTENTS

Chapter 1

Introduction

In 1936, Alan Turing proved that no computer program can ever decide for all pro-
grams whether they terminate or not. He phrased this problem for turing machines,
a simple form of programs which form the base of today’s imperative programming
languages. The problem is called the halting problem and has ever since fascinated
computer scientists and mathematicians. Although Mr. Turing has taken all hope
of ever solving the problem in general, scientists have started to develop methods
to solve at least parts of the problem or the problem restricted to particular classes
of programs.

Our research group accepted this challenge and in this work we addressed the
problem from the side of non-termination. In our work, we developed an algorithm
whose input is an imperative program and whose output is positive if the program
does not terminate for some of its possible inputs. The description of those critical
inputs is also provided by the algorithm. Of course, the algorithm is not complete,
which means that not all non-terminating programs can be identified by it.

Non-termination of programs is a bug. Bugs in software can have severe conse-
quences, expressed in the loss of millions of dollars or even human lives. The most
common method to search for bugs is testing. Testing means that we start the pro-
gram in question with specific input values and then observe whether the program
works correctly.

A program that works incorrectly terminates with wrong results, terminates
abruptly with an exception or does not terminate at all. In general, the disadvantage
of testing in comparison to proving is that a positive test result only proves the
correctness of the program for the specific input values with which the program was
started. In contrast, proving the correctness of a program means showing that the
program works correctly for a whole set of input values (if not for all of possible
inputs).

A particular drawback of testing concerning non-termination is that it is actually
not possible to test a program for non-termination. If we start a program with
specific input values and it does not terminate, then we can never determine if
the program really does not terminate or just performs a very long (but eventually
terminating) calculation. The only property we could test for in this context is
whether the program terminates before a given time is expired. All programs which

15

16 CHAPTER 1. INTRODUCTION

fail this test either terminate after a longer period of time than the given limit or do
not terminate at all. In contrast, if we can prove the non-termination of a program
for a set of input values, then there is no chance that the program does terminate
for any of those inputs.

Improving the quality of software by using formal methods has always been
a major goal of the software verification community. There are research projects
which examine the termination behavior of programs. We distinguish here between
methods to prove the termination and methods to prove the non-termination.

Algorithms for termination proofs exclusively try to find a witness to prove that
the program does terminate. If they fail in proving the termination, they do not
make a statement about the program’s termination behavior. In particular, the
algorithms in those situations do not determine if a program does not terminate;
they only say that they cannot prove the termination.

In contrast, algorithms for non-termination analyze a program exclusively for
non-termination. That means they try to prove the non-termination of a program,
but if they fail, they do not state that the program terminates. They just say that
they could not prove that the program does not terminate.

Surprisingly, all research projects in the field of termination analysis focus on
the proof of termination rather than on the proof of non-termination. Proving
termination seems to be more attractive, because termination is the desired behavior
of programs. It is only a recent development in the verification community to use
formal methods to disprove desired behavior of programs in order to find bugs. Our
approach is an analysis method which focusses exclusively on the non-termination
of programs.

Termination analysis of term rewriting systems has a very active research com-
munity. Term rewriting systems are a simple form of programs, represented by a
set of rules to transfer terms into other terms. There is an annual termination com-
petition [MZ07] for software tools which prove or disprove the termination of term
rewriting systems. The regular winners are the colleagues of the Research Group
Computer Science II, Programming Languages and Verification, of Prof. Giesl at
the RWTH Aachen with their tool AProVe [GSKT06].

To our knowledge, the AProVe project is the only project which is also capable
of proving the non-termination of programs which can be written as term rewriting
systems (see [GSKT05]). The idea behind this approach is to find a term which can
be rewritten to a more complex term which contains the original term as subterm.
This way, we could apply the rewriting step again and the term grows further and
further and thus the program never terminates. In principle, the repeated occurrence
of the term as subterm is an invariant for the rewriting step.

There are approaches to translate functional [Swi05], [PSS97] and logical pro-
grams [Käu05], [AZ95] into term rewriting systems. The termination proof of the
programs is then performed by proving the termination of the respective term rewrit-
ing systems. Those translations have the drawback of producing term rewriting
systems which are rather big and therefore their termination is hard to prove.

The field of termination analysis becomes more sparse concerning imperative
programming, which is the paradigm of the programming languages that are widely

17

used in industrial software development. Sondermann followed the approach of
translation into term rewriting systems and presents in [Son06] his translation of a
fragment of the Java language. If we can prove the termination of a term rewriting
system which is the result of the transformation of a Java program, then we have
proven the termination of the original program, too.

The transformation is sound, but unfortunately not complete. That means that
we cannot use it to prove the non-termination of a Java program. The problem
is that the transformation in some cases transforms a terminating program into a
non-terminating term rewriting system. Thus, even if a non-termination checker is
able to prove the non-termination, we could not transfer this result to conclude the
non-termination of the Java program.

An approach different from the translation into simpler systems is the synthesis
of ranking terms or ranking functions [CS01]. Colón and Sipma present in [CS02]
a termination analysis approach using those functions. Cook et al. at Microsoft
Research developed the tool Terminator ([CPR]), which proves the termination of C
programs by generation of ranking functions with the help of abstract interpretation,
symbolic execution and separation logic.

None of these approaches for imperative programs actually examines programs
for non-termination. In cases where the termination cannot be proven, these algo-
rithms output at most the path in the program flow where the problem might be.
Our algorithm in contrast, proves the non-termination and gives a description of the
set of input values which cause the program to not terminate. This information is
important in the search for bugs in programs.

We implemented the algorithm for a fragment of Java as the target language,
because Java is an example of an imperative, object-oriented programming language
and widely used in the industry. Note that the method which we developed is
not dependent on any Java-specific features. In principle it could be applied on
any other imperative and object-oriented language. Thus, to our knowledge, we
developed the first algorithm which proves automatically the non-termination of
imperative and object-oriented programs.

Because there is no other software tool like that, there is no standardized example
program set either. We built up a database of non-terminating example programs
to have a starting point for the comparison of different approaches. In our work,
we used it to measure the quality of our implementation and compare different
heuristics to each other. We ran a number of experiments on the database and
despite the inherent incompleteness of the problem, the results are promising for
practical applications.

Our work was done in the scope of the Key Project, which is a research
project at Chalmers Technical University in Gothenburg (Sweden) and other Eu-
ropean universities. In this project the KeY prover is developed whose purpose is
to verify if programs meet their specifications. Specifications include, among other
properties, statements about the termination behavior of a program. Our software
is an extension of the KeY prover to prove non-termination in particular.

18 CHAPTER 1. INTRODUCTION

Organization of this Thesis The following Chapter 2 is a slightly informal intro-
duction into the topic of termination and non-termination of programs, in particular
imperative programs. Chapter 3 provides the theoretical background for the under-
standing of this work. The foundations are followed by Chapter 4, which takes a
closer look at how to handle non-termination in dynamic logic.

In Chapters 5 and 6, we present an algorithm of a method to prove non-termi-
nation of imperative programs and its implementation as a Java software. Chapter
7 describes a series of experiments on a database of simple While programs and
evaluates their outcome. We leave the field of While programs in Chapter 8 and
analyze to what degree the algorithm of Chapter 5 can be transferred to programs
of a richer programming language, named Heap programs.

We conclude our work in Chapter 9 by summarizing the results, drawing final
conclusions, giving pointers to related work and presenting ideas for future work.

Chapter 2

Non-termination of Programs

In this chapter, we introduce the reader to the field of non-termination of programs.
We will talk about what exactly non-termination is, how it is caused, why it is a
challenge and how we addressed this problem.

2.1 Imperative Programs and their States

Characteristic features of imperative programs are the existence of variables and
statements. Variables are used to store values and statements describe the compu-
tation of the program. The content of the variables describes the current state of
the program. The set of all possible states of a program is called state space.

The statements of the program manipulate the content of the variables and so
change the state of the program. This means that programs1 define transitions from
states to states. Thus, a program’s state space can be considered as graph with
states being the vertices and programs forming (several) transitions.

The execution of a program begins in a start state, in which the variables can
have an initial value or might not been assigned one yet (and thus are considered as
undefined). The execution of a program is a trace through the graph from the start
state. If the end of the program is reached, this trace ends in a result state.

2.2 Non-termination of Programs

Non-termination of a program means that its computation never stops. In a graph
representing the state space, a non-terminating program is either represented as an
infinite path or as a cyclic path. In the case of an infinite path, with each iteration
a new state is reached. In case of a cyclic path a finite set of states is visited over
and over again in the program’s execution.

1Because program statements are one-line programs, they are included here, too.

19

20 CHAPTER 2. NON-TERMINATION OF PROGRAMS

path(int i) {

int a = 0;

while (i < 10) {

a += i;

}

}

Figure 2.1: Path
This program does not terminate for all input values less than 10. The graph shows a
part of the state space of the program Path. The first value in a state is the value of a

and the second one of i. When the program is started with i � 0, then the program does
not terminate. The path of the program then forms a cycle around the state p0, 0q. If the
program is started with i � 1 as input value, the program does not terminate either but
this time the path is an infinite path starting with the state p0, 1q.

2.3 Causes of Non-termination

There are different causes for the non-termination of a program. The most obvi-
ous one are infinite loops. Loops are infinite, if their exit criterion, which is the
falsification of the loop condition, is never fulfilled.

Other causes of non-termination in programs are infinite recursions or deadlocks.
The examination of those is beyond the scope of our work; we focussed exclusively
on infinite loops. Actually, recursive programs can always be rewritten into non-
recursive programs which use data structures like stacks. The Heap programming
language, which we introduce in Chapter 8, is rich enough to use stacks and thus
includes recursive programs implicitly. Anyway, structures like stacks could also be
encoded as integers, which means that even While programs could contain this
functionality.

2.4 The Objective of Non-termination Detection

Non-termination is usually an undesired behavior of programs. There are hardly
any applications which are designed to be non-terminating (at least for maintenance
there is always a way to shut a system down). This means non-termination is a bug,
and bugs need to be found in order to produce good software.

An example for an erroneous program which contains an infinite loop is the
program Gauss in Figure 2.2. Here the programmer overlooked the possibility that
the input variable n can be negative. In this case, the while loop does not terminate.

Our work’s objective is to provide a method to detect non-termination of pro-
grams with respect to the long-term goal of improving software development. That
means we would like to find programming errors which lead to non-termination
rather than solving the halting problem in general. In particular, we like to achieve

2.5. INVARIANTS TO PROVE NON-TERMINATION 21

gauss(int n) {

int sum = 0;

while (n != 0) {

sum += n;

n--;

}

}

Figure 2.2: Gauss
This is an example of a While program. The
program calculates the Gaussian sum, which is
the sum of all integers between 1 and the value
of the parameter n. It does not terminate for
negative input values.

the following goals.

1. Identify non-terminating programs.

2. Identify the critical inputs. Those are the ones for which a program does not
terminate.

3. Describe the set of critical inputs as general as possible.

4. Automate 1.-3. as much as possible.

Alan Turing presented in [Tur36] the famous halting problem. The halting prob-
lem asks the question: Given the description of a target Turing machine and an
input sequence, is there a Turing machine that could determine if the target Turing
machine will terminate when processing the input? Alan Turing proved in the same
work, that there is no such Turing machine.

Modern imperative programming languages are based on the concept of Turing
machines. Thus, our goals are dependent to the halting problem and thus they are
as unsolvable in general as the halting problem itself. A consequence of the halting
problem is that we for example will never be able to identify all non-terminating
programs nor all critical inputs of all programs. Nevertheless, although the task
is not solvable in general, it is a reasonable objective to solve it at least for as
many programs as possible and in particular for programs, which are realistically
developed in real-life software projects.

In conclusion, our focus is to help developers to find bugs automatically and
thereby improve the quality of software rather than on the (pointless) search for a
complete solution of the problem.

2.5 Invariants to Prove Non-termination

In this work, we will present an algorithm to detect non-termination. The idea of
this algorithm is based on invariants. Invariants are formulae which describe a set
of states. In particular, the set should have the following properties.

1. At least one state of the set is reachable in the program’s execution.

22 CHAPTER 2. NON-TERMINATION OF PROGRAMS

2. The set is disjoint from the set of states, in which the loop condition does not
hold anymore. This means the set does not contain any states in which the loop
terminates.

3. Once the program’s execution enters this set of states, it does not leave it any-
more.

Thus, invariants are formulae which make a statement about program variables
and which fulfill the following criteria. Assume that we look at a program which
contains at least one (possibly infinite) loop. We can phrase the three properties
equivalently as properties of invariants.

1. In the program state which the execution of the program reaches right before
the loop is entered, the invariant is fulfilled by the current assignment of the
program variables.

2. If the invariant holds before an arbitrary loop iteration, it also holds after the
loop iteration.

3. If the invariant holds, then the loop condition is fulfilled.

If the invariant holds before the loop and implies the loop condition, the loop is
entered for sure. Thus the first and the third criterion ensure that the loop is carried
out at least once. If the invariant is preserved in every loop iteration and implies
the loop condition, the loop is executed over and over again in case it is entered at
all. This is ensured by the second and third criterion. All criteria together make
sure that the loop does not terminate.

Intuitively, an invariant describes a set of states which the program’s execution
enters when the loop is started and never exits in the execution of the loop. An
invariant can describe the set more abstract than actually necessary, as long as the
set which is described does not contain states which lead to the termination of the
loop.

The point is, if we find such an invariant, we have proven the non-termination
of the program. From now on, we will refer to invariants which fulfill these three
criteria as non-termination invariants.

Note, that there are other applications of invariants in reasoning about programs,
too. We will have a closer look at invariants in Chapter 4 and discuss their various
applications in Section 4.4.

2.6 Invariant Refinement using Failed Proofs

In this work, we will present an algorithm which generates non-termination invari-
ants automatically. In this section, we briefly present the idea of the algorithm,
which we describe in detail in Chapter 5.

In Section 3.2, we will define a logic named While Dynamic Logic, in which
we can reason about programs. In particular, we can use dynamic-logic formulae
to express properties of programs. Such a property is for example that they do not
terminate. There are theorem provers which automatically generate proofs using a

2.6. INVARIANT REFINEMENT USING FAILED PROOFS 23

proof procedure2 which uses a calculus. Our algorithm uses such a theorem prover
to prove the non-termination of programs.

Our algorithm invokes the prover to prove non-termination. During this proof
procedure a non-termination invariant is required. This invariant is not provided
by the procedure itself, but by our algorithm. In the first run of the procedure, the
algorithm has no knowledge about the invariant and thus provides just the formula
true as invariant candidate.

If the proof procedure is not able to close the proof, the information of the failed
proof attempt is handed back to the algorithm. The algorithm inspects the failed
proof and retrieves information from it to refine the invariant candidate. The refined
invariant candidate is then used in another proof attempt. This process of inspection
of failed proofs, invariant refinement and invocation of the proof procedure is done
iteratively until one of these events occurs: a non-termination invariant is found,
the invariant generator runs out of candidates or the maximum number of iterations
is reached.

Thus, in the iterations of our algorithm, the invariant candidate is refined more
and more in order to eventually become a non-termination invariant.

2The term “proof procedure” is semantically not correct, because the procedure actually un-
dertakes the action of proving as opposed to being a part of a proof. Because the word for the
action is “to prove”, it would be more logical if it was called “prove procedure”, but for some
reason the term “proof procedure” is used more frequently. Although it is not logical, we obey the
mainstream here and use it, too. The same applies for the term “proof obligation”, for example.

24 CHAPTER 2. NON-TERMINATION OF PROGRAMS

Chapter 3

Foundations

In this chapter, we explain the necessary foundations for our work. In the first sec-
tion, we present the programming language While. The programs of this language
are the ones whose termination behavior we analysed. The following section intro-
duces a logic, While Dynamic Logic, which enables us to reason about programs.
Section 3.3 describes a calculus for this logic. Section 3.4 deals with an extension of
the proof procedure which enables the prover to deal with existentially quantified
variables. The final section is an introduction into the theorem prover KeY, which
we used in our implementation.

3.1 While Programs

The first group of programs whose termination behavior we analyzed is written in
a language which is a small fragment of Java1. We call a program of this language
While program and will give a formal description in Definition 3.10 in the succeed-
ing section. The language is defined in Java-like syntax, but the results of our work
are independent of Java-specific features, which means that any other imperative
programming language would have served the purpose of our analysis as well.

3.1.1 Elements of While Programs

The following syntactic elements of Java are allowed in While programs.

• Variables of the primitive datatype int or boolean.

• The literals . . . , -2, -1, 0, 1, 2, . . . and NaN of type int and true and false of
type boolean.

• The usual operations on integers, which are multiplication *, addition +, sub-
traction -, integer division /, the modulo operation % and unary negation -.

• The usual operations on boolean values, which are the and-operation &&, or-
operation || and the negation !.

1See [GJSB05] for the specification of Java.

25

26 CHAPTER 3. FOUNDATIONS

collatz(int i) {

while (i > 1) {

if (i % 2 == 0) {

i = i/2;

} else {

i = 3*i+1;

}

}

}

Figure 3.1: The Collatz program.
This is one of the famous 3x�1 problems, which
were named after the German mathematicion
Lothar Collatz. It is still unknown if this pro-
gram terminates for all inputs.

• The equality operator = for both integers and boolean values and inequality
operators <, <=, > and >= for integers.

• Assignments to variables. By definition of the While language, no expressions
with side-effects are allowed, which leads to assignments which have only effect
on the variable on the left side of the assignment. An example for such a side-
effect-free assignment is:

x = y*2 + 5;

• The conditional statement if-then-else, where the condition has to be a
boolean expression2 and the programs of the two branches are valid While
programs.

• The loop statement while, where the loop condition is a boolean expression2

and the program in the loop body is a valid While program.

For a formal definition of the language see Definition 3.10. An example of a
While-program is given in Figure 3.1. Note, that we include the program name
with the input parameters in the description of the examples, although these are not
actually included in the While program’s syntax. We do this to be able to refer to
the programs in formulae without quoting the complete program every time.

3.1.2 Comparison of While and Java Programs

The following elements of Java are syntactically not allowed3 in While programs,
but they do not actually restrict the set of programs to be analyzed, because each
program which uses those elements can be transformed into a program complying
to the definition of While programs.

2Because there are no operators with side-effects allowed, any valid boolean expression will be
side-effect-free.

3Although we exclude these elements from the While language, the examples which we show
in this document might contain some of them. The reason is that the used theorem prover is able
to handle them, but for the definition of the logic it is more convenient to have as few elements as
possible.

3.2. WHILE DYNAMIC LOGIC 27

• Conditions and assignments with side effects. Those can be decomposed in
simple assignments to additional variables each having only effect on the assigned
variable.

• Other kinds of loops: for-loops, do-while-loops, repeat-until-loops or
do-unless-loops can be transformed into while loops using additional variables.

• break and continue statements. Loops containing break and continue can
be transformed into while loops using additional variables. This syntactical
restriction simply ensures that the only exit point from a loop is the falsification
of the loop condition.

• The increase and decrease operators for integers, for example i++. These oper-
ations can be simulated by the usual addition and subtraction of integers.

We do not include functions or objects (so neither methods of objects) into
the While language and in particular we exclude recursive functions or methods,
because their termination behavior is not in the scope of this thesis (Section 2.3).

Feature restrictions of the While language like the use of objects, arrays, func-
tions are made to prevent the language from becoming too complex to be handled.
But those features (except for recursive methods and functions) are allowed in the
Heap programming language, which we deal with in Chapter 8.

3.2 While Dynamic Logic

While Dynamic Logic (While DL) is a version of dynamic logic for While pro-
grams. Formulae in dynamic logic state properties of programs. The logic is based
on typed first-order logic, which is a variant of first-order logic that imposes a type
system on its elements. For instance, a function symbol is not only assigned the
number of its inputs, but also the types of them as well as an output type.

Our version of dynamic logic comes with a syntactic feature, named updates,
which is not common in definitions of dynamic logic of traditional textbooks4. Up-
dates are a mechanism to save a program state during a symbolic execution. We
will talk in detail about updates in Section 3.2.2, where we explain the semantics
of them, and about symbolic execution in Section 3.3.1, where we present calculus
rules for it.

3.2.1 Syntax of While DL

We define the elements of While DL here. Those elements are types, updates, pro-
grams, terms and formulae, of which the latter two are defined similar to traditional
first-order logic5.

4See [HKT00] for an example of a description of traditional dynamic logic.
5See [Fit96] for an introduction into first-order logic.

28 CHAPTER 3. FOUNDATIONS

Types We designate a set of symbols as types. Intuitively, types in While DL
are similar to types in a programming language. In Java for instance, variables and
expressions have types. The set of types for While DL is defined as follows.

Definition 3.1 (While DL Types). We define TWhile as the set of types

TWhile � tK, int, boolean,Ju

where K is called the empty type and J the universal type.
There is a subtype relation ¤, which is defined upon TWhile as follows:

K ¤ A ¤ J for all A P TWhile

int ¦ boolean

boolean ¦ int

For convenience reasons, we leave out the subscript While of TWhile, if it is clear
that we are talking about this set of types. This will be the case in all chapters from
this one to Chapter 7.

The types K and J and the subtype relation are the forerunners of a more general
type system. The existence of K and J ensures that T forms a lattice, which means
there is a greatest common sub- and smallest common supertype for all pairs of
types. Later, in Chapter 8, we will extend the notion of types to the more general
system, but for dealing with While programs this one is sufficient. We chose to
keep the system as small as possible to not overwhelm the reader with (so far)
unnecessary details.

Signatures Traditional textbooks about first-order logic6 use signatures to define
the number of inputs of function and predicate symbols. Signatures in our defini-
tion define not only the number of inputs, but also their types. Furthermore, the
signature defines types also for variables, the output of function symbols and the
inputs of predicate symbols.

We formally describe a signature in the following definition7. There, a signature
resembles the signature of a method in Java, which also specifies the number and
types of the input parameters and the type of the output parameter. Because
we intend to reason about programs, it is extremely useful to include the type
information for variables, functions and predicates in the definition of the logic.

The type information in our signature is given by the typing function α, which
assigns types to two kinds of variables, predicate inputs, function inputs and function
outputs.

Definition 3.2 (While DL Signature). A While DL signature for TWhile is a
tuple pVl,Vp,F ,P , αq consisting of

• a set Vl of logical variables,

• a set Vp of program variables,

6See [Fit96] for an introduction into first-order logic.
7This definition is loosely inspired by [BHS07], Definition 2.8.

3.2. WHILE DYNAMIC LOGIC 29

• a set F of function symbols,

• a set P of predicate symbols, and

• a typing function α.

α has the following properties:

• αpvq P T for all v P Vl Y Vr,

• αpfq P T n � T for all f P F of arity n, and

• αppq P T n for all p P P of arity n.

The set of function symbols F contains these elements:

• The binary integer operations �,�, �, {,% P F .

• The unary integer operation � P F .

• The integer literals . . . , -2, -1, 0, 1, 2, � � � P F and NaN P F8.

• The boolean literals true, false P F .

• Infinitely many function symbols of each type and all arities and combinations
of input types9.

• The binary boolean operations && and || and the unary operation !.

The set of rigid predicate symbols contains only these elements:

• The binary integer comparison operations ,¤,¡,¥ P P .

• The binary comparison operation = for the type J10.

We use the following notations:

• v : A for αpvq � A for v P Vl Y Vp,

• f : A1, . . . , An Ñ A for αpfq � ppA1, . . . , Anq, Aq and f P F , and

• p : A1, . . . , An for αppq � pA1, . . . , Anq and p P P .

We distinguish logical variables from program variables, because it simplifies the
calculus. For example, we want to restrict the application of substitutions to logical
variables, because we do not appreciate any substitutions in programs11.

Example 3.3 (While DL Signature). As an example, have a look at the following
signature pVl,Vp,F ,Pq with

Vl � tk, lu and Vp � ta, b, eu

8The symbol NaN is included in F to handle division by zero; see Section 3.2.2.
9This is necessary, because the calculus rules allRight and exLeft introduce function symbols

which have not been used so far. Because of the metavariables (see Section 3.4.1), these function
symbols need to have input terms, because they indicate which metavariables the symbols is
dependent of. This is described in detail in Section 3.3.1.

10Because this is a supertype of all types, the predicate can be applied on all other types in T
as well.

11Those substitutions would violate some essential properties of substitions, for example the
substitution lemma. See [Fit96], Section 5.2 for more details on substitution.

30 CHAPTER 3. FOUNDATIONS

and F and P as defined in the preceding definition. α assigns the following types:

a : int k : boolean b : int

l : int e : boolean

Updates Updates are a part of formulae which contain information about program
states. To be precise, they describe the difference from a starting state to the current
state of a program during an execution.

Updates look like common assignment statements in programs. On the left side
of an update there is a program variable which is assigned the term on the right
side of the update. Updates can be performed in parallel, which is syntactically
expressed by separating multiple updates by the symbol ||.

Example 3.4 (While DL Updates). Have a look at the following examples of
updates

a :� 2 b :� 4� l e :� k
e :�!e a :� a � p�1q || e :� k && e

The following definition12 describes updates in detail. Updates are not a standard
element of dynamic logic, but happen to be an intuitive way to deal with programs
and their states. Beckert et al. introduce them in [BHS07] for the Java Card
Dynamic Logic.

Note, that we define updates using the notion of terms and vice versa. We chose
this mutually inductive definition, because this was the simplest way to introduce
them. We preferred this approach to give the reader a chance to grab the concept
in an intuitive way.

Definition 3.5 (While DL Updates). Let pVl,Vp,F ,P , αq, a While DL signature
for the type set T be given, then the set U of syntactic updates is inductively defined
as the least set such that:

• pv :� tq P U for all v P Vp of type A and t P TA
13 (variable update), and

• pu1 || u2q P U for all u1, u2 P U (parallel update).

Terms Terms in a logic are similar to expressions in a programming language. We
form terms by applying function symbols to logical or program variables, constants14

and other terms. Another way of forming terms is to precede another term with an
update.

The formal definition15 of terms does not differ much from the definition in
traditional textbooks16 except that the types of the entities have to comply to the
signature and that updates can be part of terms.

12The definition is a fragment of Definition 3.8 of [BHS07].
13TA is the set of terms of type A and defined in Definition 3.6.
14Constants are technically nullary function symbols.
15Taken from [BHS07], Definition 2.15.
16See for example [Fit96], Definition 5.1.2.

3.2. WHILE DYNAMIC LOGIC 31

Definition 3.6 (While DL Terms). Given a While DL signature pVl,Vp,F ,P , αq
for the set of types T , the system tTAuAPT of sets of terms of type A is inductively
defined as the least system of sets such that:

• x P TA for all variables x P Vl Y Vp with x : A,

• fpt1, . . . , tnq P Ta for all function symbols f : A1, . . . , An Ñ A in F and terms
ti P TCi

and Ci ¤ Ai for 1 ¤ i ¤ n, and

• tuut P TA for all updates u P U and all terms t P TA.

Example 3.7 (While DL Terms). The following words are examples for valid and
invalid terms of the signature defined in Example 3.3.

1. a P Tint

2. l � 2 P Tint

3. a� b� 4 P Tint

4. e && k P Tboolean

5. tb :� 5upb � bq P Tint

6. a � k R T

7. maxpa, bq R T

Example 6 is not a valid term, because the variable k is of the wrong type to
be an input variable to the function �. Example 7 is not a valid term, because the
signature does not contain a function max.

We are going to identify two subsets of terms, ground terms and rigid terms.
Note, that, according to our definition, ground terms are allowed to contain vari-
ables, but only program variables and no logical variables.

Definition 3.8 (Ground Terms). A term which contains no logical variables and
no updates is called ground term.

The terms a and a� b� 4 of Example 3.7 are ground terms, but terms l � 2 and
e && k are not, because they contain logical variables. The term tb :� 5upb � bq is
not a ground term, because it contains an update.

We will define a calculus for While DL in Section 3.3. Some of the rules in this
calculus distinguish between terms that can change their meaning from one program
state to another and those that cannot. The latter set of terms is called rigid terms
and we describe it in the following definition17.

Definition 3.9 (Rigid Terms). A While term t is rigid,

• if t � x and x P Vl,

• if t � fpt1, . . . , tnq, f P F and the subterms ti are rigid p1 ¤ i ¤ nq, or

• if t � tuus and s is rigid.

Of the terms in Example 3.7 only the term l � 2 is rigid, because all others contain
program variables.

17Taken from [BHS07], Definition 3.32.

32 CHAPTER 3. FOUNDATIONS

Programs Formulae in While DL state properties of programs. Therefore pro-
grams are a syntactic part of the logic. The following definition is the formal de-
scription of the While language, which we introduced in Section 3.1.

Definition 3.10 (While Programs). The set of While programs P is inductively
defined by

• v � t; P P, where v P Vp with v : A and t P TC a ground term with C P
tint, booleanu and C ¤ A;

• p1p2 P P, if p1, p2 P P;

• if (c) { p1 } else { p2 } P P and if (c) { p1 } P P, if c P Tboolean a
ground term and p1, p2 P P; and

• while (c) { p } P P, if c P Tboolean ground term and p P P.

We gave an example for a While program in Figure 3.1.

Formulae A formula in a logic resembles a boolean expression in a programming
language. In traditional first-order logic, we form formulae only by applying predi-
cates to terms or compose them from other formulae using logical connectives and
quantifiers. In dynamic logic, we can precede a formula by a program. The intended
semantics, which we will define in Section 3.29, are that the formulae states a prop-
erty about the resulting state of the program. Our specific logic provides one more
way to form a formula, which is to prefix an update to a subformula.

Although a formula is similar to boolean valued terms or boolean expressions in
a programming language, we distinguish between formulae and terms or expressions.
Formulae can be composed by more elements than terms, for example quantifiers and
logical connectives. Furthermore, boolean expressions in programming languages
can have side effects on variables18, where formulae do not change the value of
(logical) variables. The formal definition19 of formulae follows.

Definition 3.11 (While DL Formulae). Let a signature pVl,Vp,F ,P , αq for the
type set T and a While program p be given. Then the set F of While DL formulae
is inductively defined as the least set such that

• rpt1, . . . , tnq P F for all predicate symbols r : A1, . . . , An P P and terms ti P TCi

with Ci ¤ Ai for 1 ¤ i ¤ n,

• true, false P F,

• ϕ, ϕ_ ψ, ϕ^ ψ, ϕÑ ψ, ϕØ ψ P F for all ϕ, ψ P F.

• @x ϕ, Dx ϕ P F for all ϕ P F and all variables x P Vl,

• tuuϕ P F for all ϕ P F and u P U, and

• xpyϕ, rpsϕ P F for all ϕ P F and p P P.

18Although, in the While language as we defined it in Section 3.1, boolean expressions cannot
have side effects, but in general there are programming languages in which they can.

19This definition is inspired by Definition 3.14 of [BHS07].

3.2. WHILE DYNAMIC LOGIC 33

The symbol @ in the formula @x ϕ is called universal quantifier and the symbol
D in the formula Dx ϕ is called existential quantifier. They bind the variable x in
their scope, which is the subformula ϕ. We denote variables that are not bound as
free and define them formally in Definition 3.1420. Closed formulae do not contain
free variables. Note, that we can only quantify over logical variables, but not over
program variables21.

Example 3.12 (While DL Formulae). The following formulae are proper While
DL formulae using the signature of Example 3.3:

1. a� b � b� 5

2. ta :� 10u a ¡ 20

3. rif (a ¡ b) { a � b } else { b � a }spa � bq

4. te :� falseure = (!e);spe � trueq

5. Dx pl � x � xq

6. @x tb :� xurb = b + 5spb ¡ xq

As for terms, we distinguish between formulae which can evaluate differently in
different program states and those which cannot. The latter are called rigid formulae
and are described in the following definition22.

Definition 3.13 (Rigid Formulae). A While DL formula ϕ is rigid,

• if ϕ � ppt1, . . . , tnq, p P P and the terms ti are rigid with 1 ¤ i ¤ n,

• if ϕ � true or ϕ � false,

• if ϕ � ψ and ψ is rigid,

• if ϕ � ψ1 _ ψ2, ϕ � ψ1 ^ ψ2, or ϕ � ψ1 Ñ ψ2, and ψ1, ψ2 are rigid,

• if ϕ � @x ψ or ψ � Dxψ, and ψ is rigid, or

• if ϕ � tuuψ and ψ is rigid.

Of the formulae in Example 3.12 only Dx pl � x � xq is rigid, because all other ones
contain program variables.

Definition 3.14 (Free Variables in While DL). We define the set fvpuq of free
variables of an update u by:

• fvpv :� tq � fvptq and

• fvpu1||u2q � fvpu1q Y fvpu2q.

We define fvptq, the set of free variables of a term t, by

20Taken from [BHS07], Definition 2.17 and 3.14.
21This is a technical decision, because it simplifies the calculus. It would be possible to define a

logic where we can quantify over program variables as well. We chose this way to preserve classical
properties of substition. For details on substitution, see [Fit96], Section 5.2.

22Taken from [BHS07], Definition 3.37.

34 CHAPTER 3. FOUNDATIONS

• fvpvq � tvu for v P Vl,

• fvpxq � H for x P Vp,

• fvpfpt1, . . . , tnqq �
�

i�1,...,n fvptiq for f P F , and

• fvptuutq � fvpuq Y fvptq for t P T and tuu P U.

We define fvpϕq, the set of free variables of a formula ϕ, by

• fvpppt1, . . . , tnqq �
�

i�1,...,n fvptiq for p P P ,

• fvptrueq � fvpfalseq � H,

• fvp ϕq � fvpϕq,

• fvpϕ^ ψq � fvpϕ_ ψq � fvpϕÑ ψq � fvpϕq Y fvpψq,

• fvp@x ϕq � fvpDx ϕq � fvpϕqztxu,

• fvptuuϕq � fvpuq Y fvpϕq for a formula ϕ, and

• fvpxpyϕq � fvprpsϕq � fvpϕq for a formula ϕ.

Of the formulae in Example 3.12 only the formula Dx pl � x � xq has a free variable,
namely l. All other formulae have no free variables, because their variables are either
program variables or bound by a quantifier.

3.2.2 Semantics of While

The semantics of While DL captures the intuitive meaning of programs. A state of
a program is completely specified by an assignment of program variables. A program
can be considered as a function on program states, which simply means it converts
one state to another by performing its action.

We define the semantics of all elements of While DL step by step beginning
with models. Models23 form the basis of the semantics by providing a domain and
an interpretation. A domain is a set of elements of each available type. The elements
of the domain are the values which can be assigned to variables. An interpretation
is a mapping of function and predicate symbols to actual functions and predicates.

Definition 3.15 (While DL Model). Given the type set TWhile and a While DL
signature, a While model is the triple MWhile � pDWhile, δWhile, IWhileq with

• the domain DWhile, such that

DWhile � Dint YDboolean

with

Dint � t. . . ,�2,�1, 0, 1, 2, . . . u and Dboolean � ttrue, falseu;

23The following definition is inspired by Definition 2.20 of [BHS07].

3.2. WHILE DYNAMIC LOGIC 35

• the type function δWhile : DWhile Ñ TWhile with

δWhilepiq � int for i P Dint and
δWhilepbq � boolean for b P Dboolean;

• and the interpretation IWhile, which maps each function symbol f : A1, . . . , An Ñ
A P F to a function

IWhilepfq : DA1 � � � � �DAn Ñ DA,

and each predicate symbol p : A1, . . . , An P P to a subset

IWhileppq � DA1 � � � � �DAn ,

with A1, . . . , An, A P T .

IWhilepfq maps the literals . . . , -2, -1, 0, 1, 2, . . . and true, false to their intuitive
counterparts in Dint and Dboolean. The symbol NaN is mapped to an integer which is
not specified any further here. Besides that, IWhilepfq relates the intuitive algebraic
and boolean predicates to the predicates ,¤,¡,¥,�, &&, ||, which we defined in
Definition 3.2.

For the binary symbols �,�, � P F and the unary � P F , we demand that
IWhilepfq yields the intuitive algebraic operations. The modulo operator % and the
division operator { are assigned the Euclidean modulo and division operators as they
are defined in [Bou92], Section 2.4.

For convenience, we omit the subscript While of symbols, if it is clear about which
version of the symbol we are talking.

Note 3.16 (On Modulo and Division Operators). The definition of the modulo
and division operators varies among different programming languages. The one
which makes most sense from the mathematical viewpoint is the one we chose, the
Euclidean division and modular operators from [Bou92], Section 2.4. We quote the
definition here to clarify all details.

Definition 3.17 (Euclidean Division and Modulo Operation). With a, b of type
int, we define

a { b � q and a % b � r

where q, r are of type int and represent the corresponding entities in Euclid’s the-
orem, Theorem 3.18.

Theorem 3.18 (Euclid’s Theorem). For any real24 numbers a1, b1 P R with b1 �� 0,
there exists a unique pair of numbers q, r P R satisfying the following conditions.

q P Z, a1 � b1 � q � r and 0 ¤ r |b1|

24And thus also for any integer numbers.

36 CHAPTER 3. FOUNDATIONS

The interpretation of the modulo and the division operator differs from the op-
erators as they are implemented in Java. We chose this interpretation, because we
want to present our results as independent of a particular programming language as
possible. However, it is possible to construct examples where the difference in the
interpretations can make a difference in the termination behavior of the program,
but this does not affect the general idea of the method which we developed in this
work.

To evaluate a formula or a term, we need to assign values to variables. Therefore
we define a variable assignment to be a mapping between the set of variables and
the domain, which contains the values. The following two definitions25 define this
mapping for the two types of variables, program and logical ones.

Definition 3.19 (Logical Variable Assignment). Given a model M � pD, Iq, a
logical variable assignment is a function β : Vl Ñ D, such that

βpxq P DA for all x : A P Vl.

We also define the modification βd
x of a variable assignment β for any variable x : A

and any domain element d P DA by:

βd
xpyq :�

"
d if y � x
βpyq otherwise.

Example 3.20 (Logical Variable Assignment). An example for a logical variable
assignment for the example signature which we defined in Example 3.3 is:

βplq � 2 and βpkq � false.

A modification of β is β4
l which is defined by

β4
l plq � 4 and β4

l pkq � βpkq � false.

Definition 3.21 (Program Variable Assignment). Given a model M � pD, Iq, a
program variable assignment is a function γ : Vp Ñ D, such that

γpvq P DA for all v P Vp, v : A,A P T

Example 3.22 (Program Variable Assignment). An example for a program variable
assignment for the example signature defined in Example 3.3 is:

γpaq � 2, γpbq � �5 and γpeq � true

A program variable assignment is a state of a program. Note, that such an
assignment is always a function from the set of program variables into the domain.
In Definition 3.25, we will define the semantics of programs as functions from states
to states. To define the semantics of non-terminating programs as well, we need

25The definition of logical variable assignments is taken from [BHS07], Definition 2.23

3.2. WHILE DYNAMIC LOGIC 37

another state, namely one which is not represented by a variable assignment. This
additional state serves as “output” state of non-terminating programs, although of
course they literally do not have any final state. Because we need the notion of
a state space with such a state, we invent a new state and introduce an extended
version of the state space.

Definition 3.23 (Program State and State Space). Given a model M � pD, δ, Iq,
the set SM of program states is defined as

SM � tγ | γ : Vp Ñ Du

We define an additional state, named s8 R SM. We define the state space SM8 which
is SM extended by s8:

SM8 � SM Y ts8u

With a domain, variable assignments and semantics of function symbols, we can
now give terms a meaning. We calculate a value for a term from the values which
are assigned to the variables by the application of the functions which are involved
in the term.

Note, we use the semantics of updates JuKM,βpγq in the definition of terms and
vice versa. This is due to the fact that we already defined the syntax like that,
because it is the most intuitive way to understand the relation between those entities.
The definition of the overriding operator ` and of the semantics of updates follows
in Definition 3.28.

Definition 3.24 (Semantics of Terms). Let M � pD, Iq be a model, β a logical
variable assignment and γ a program variable assignment. We inductively define
the valuation function valM,β,γ for terms as

• valM,β,γpvq � βpvq for any variable v P Vl,

• valM,β,γpwq � γpwq for any variable w P Vp,

• valM,β,γpfpt1, . . . , tnqq � IpfqpvalM,β,γpt1q, . . . , valM,β,γptnqq for every f P F and
ti P T, and

• valM,β,γptuutq � valM,β,γ`JuKM,βpγqptq for u P U and t P T.

We define σ to be the function which maps each term to the type of its valuation.

Programs can be considered as partial functions on the set of states. A program
maps an input state to a result state, which is reached if we execute the program with
the input state as start state. This notion is captured in the following definition26

of the semantics of programs.

Definition 3.25 (Semantics of Programs). Given a M � pD, Iq, a program is a
function:

JpKM : SM8 Ñ SM8 .

26This definition is inspired by [HPRW06].

38 CHAPTER 3. FOUNDATIONS

Concerning the state s8, all programs have the same semantics:

JpKMps8q � s8

The semantics of the program elements of Definition 3.10 follow for all other states
γ �� s8

27.

• Assignments:

Jv � tKMpγqpxq �
"

valM,γptq if x � v
γpxq otherwise,

• Composition:

Jp1p2KM :� Jp2KM � Jp1KM,

where � denotes the composition of functions.

• Loops:

Jwhile (c) { p }KM :� lim
iÑ8

wi,

where wi is defined as

wi : SM8 Ñ SM8 ,

and
w0pγq � s8

wi�1pγq �

"
wipJpKMpγqq for valM,γpcq � true
γ otherwise.

and
limiÑ8wipxq � y if

wjpxq � y for almost all j P N.

• Conditionals:

Jif (c) { p1 } else { p2 }KMpγq :�

"
Jp1KMpγq if valM,γpcq � true
Jp2KMpγq otherwise

From the definition of the semantics of the composition of programs we can
conclude that the composition is associative. That means the programs pp1p2qp3

and p1pp2p3q are identical.

We state a specific example to make the semantics of programs clearer.

Example 3.26 (Semantics of Programs). Let p be the program StateSpace in
Figure 3.2. According to Definition 3.25, the semantics is the function

JpK : pDint �Dintq Y ts8u Ñ pDint �Dintq Y ts8u : pa, iq ÞÑ JpKpa, iq

27Note, that the valuation of expressions like t in the assignment or c in the conditional in this
definition depends only on the model M and the assignment γ of program variables and not on
the assignment of logical variables, because terms which can occur in programs are ground terms
only (see Definition 3.10).

3.2. WHILE DYNAMIC LOGIC 39

statespace(int i, int a) {

while (0 <= i && i < 2) {

a = 2*a;

i = i+1;

}

}

Figure 3.2: StateSpace
A simple program with two input variables.

with
pa, iq JpKpa, iq
s8 s8

pa, 0q pa � 4, 2q
pa, 1q pa � 2, 2q
pa, iq pa, iq for i 0 or i ¥ 2

Updates are similar to programs, but in contrast to programs they are not func-
tions between program states but from program states to partial variable assign-
ments. Thus, the application of an update does not yield a full description of a
program state, but a description of the difference from the program state before the
update to the state after the update.

Semantically, updates are functions from the set of program states to the set of
partial functions from the program variables to the domain. The parallel application
of updates is represented by the different partial functions which override each other.
If a parallel update is applied and different updates of the parallel one contradict
each other, always the rightmost one wins. To define these semantics, we define28

an overriding operator `, which captures exactly this behavior.

Definition 3.27 (Overriding Operator). Given a set M , for two (partial or total)
functions f, g : M ÑM , we define

f ` g :� tpa ÞÑ bq P f | for all c : pa ÞÑ cq R gu Y g,

which means g overrides f but leaves f unchanged at points where g is not defined.

With the notion of the overriding operator, we can now define28 the semantics
of updates.

Definition 3.28 (Semantics of Updates). Updates u P U are partial functions from
the state space to partial variable assignments

JuKM,β : SD Ñ pVp Û Dq,

where Vp Û D stands for a partial function from Vp to D. The semantics for single
and parallel updates are

Jw :� tKM,βpγq :� tw ÞÑ valM,β,γptqu

28This definition is taken from [Rüm06], Section 4.

40 CHAPTER 3. FOUNDATIONS

and
Jw1 :� t1 || . . . || wk :� tkKM,βpγq :�

Jw1 :� t1KM,βpγq ` Jw2 :� t2KM,βpγq ` ...` Jwk :� tkKM,βpγq.

At this point, we have defined all ingredients to define the semantics of formu-
lae29. In the following definition, we do not distinguish between the formula true
and the truth value true. A formula is valid, if it is equivalent to the formula true.

Definition 3.29 (Semantics of Formulae). Let M � pD, Iq be a model, β a logical
variable assignment and γ a program variable assignment. We inductively define
the valuation function valM,β,γ for formulae as follows.

• valM,β,γptrueq � true.

• valM,β,γpfalseq � false.

• valM,β,γpppt1, . . . , tnqq � true iff pvalM,β,γpt1q, . . . , valM,β,γptnqq P Ippq for p P P .

• valM,β,γp ϕq � true iff valM,β,γpϕq � false.

• valM,β,γpϕ^ ψq iff valM,β,γpϕq � true and valM,β,γpψq � true.

• valM,β,γpϕ_ ψq iff valM,β,γpϕq � true or valM,β,γpψq � true (or both).

• valM,β,γp@x ϕq � true iff valM,βd
y ,γpϕq for every d P DA and x : A.

• valM,β,γpDx ϕq � true iff valM,βd
x,γpϕq for some d P DA and x : A.

• valM,β,γptuuϕq � valM,β,γ`JuKM,βpγqpϕq for u P U and ϕ P F.

• If p P P, then

valM,β,γprpsϕq �

"
valM,β,JpKM,βpγqpϕq for JpKM,β �� s8
true otherwise.

• valM,β,γpxpyϕq � valM,β,γp rps ϕq.

Note 3.30 (Partial Correctness and Total Correctness). When reasoning about
programs, we distinguish two types of proofs, partial correctness proofs and total
correctness proofs. In partial correctness proofs, the termination of a program is not
mandatory. Partial correctness proofs prove properties of a program provided that
the program terminates. In situations where it does not terminate, the proof does
not say anything about the program.

In contrast, total correctness proofs require the proof of termination. Total
correctness proofs can be split up into two parts30: the proof of the termination
and the proof of the actual statement which the user intended to make about the
program. If the user does not want to prove anything else besides the termination,
this sole termination proof is also called a total correctness proof.

29This definition was inspired by Definition 2.26 of [BHS07] and the definition of the semantics
of programs which contain modalities in [HPRW06], Section 3.2.

30This is only correct for deterministic programs. Both programming languages which we used,
While and Heap are deterministic.

3.3. WHILE DL CALCULUS 41

In dynamic logic, those two types of correctness are represented by the two types
of modalities, which are provided to integrate programs into formulae. The formula
rpsϕ for a program p and a formula ϕ says: “If the program p terminates, the
formulae ϕ holds after the execution”. In contrast, the formula xpyϕ states: “The
program p does terminate and after the execution ϕ holds”.

Validity and Satisfiability Essential properties of formulae are validity and sat-
isfiability. In first-order logic, those properties are defined given a model and a
logical variable assignment. We interpret logical variables existentially and program
variables universally, which leads to the following definition31.

Definition 3.31 (Validity, Satisfiability, Unsatisfiability). A formula ϕ is valid, iff
for each model M � pD, Iq and each program variable assignment γ P SM there is
a logical variable assignment β : Vl Ñ D such that valM,β,γpϕq � true.

A formula ϕ is satisfiable, iff there is a model M � pD, Iq, program variable
assignment γ P SM, and a logical variable assignment β : Vl Ñ D such that
valM,β,γpϕq � true.

A formula ϕ is unsatisfiable, iff Dx1 . . . Dxn ϕ is valid, where x1, . . . , xn are the
free variables of ϕ.

3.3 While DL Calculus

A calculus is a formalism to derive the validity of formulae. Constructing a proof us-
ing a calculus means applying purely syntactic operations on formulae. The calculus
which we present here is a derivation of a Gentzen-sequent calculus32.

The starting point of a proof is a sequent formula, to which the formula in
question is translated. Sequent formulae are a particular form of sets of formulae,
which we will define soon. We apply a rule on the sequent formula, resulting in one
or more new sequent formulae. We go on applying rules on the sequent formulae
until we reach a set of end sequent formulae, called axioms, which are trivially valid.

The direction of the proof construction is backward, because we start with what
we want to show and end up with what we knew before. The way to read a proof is
the other way round, because naturally we start with what we know and combine
these facts with each other until we reach the statement which we want to prove.
So, the presented calculus is a method of backward reasoning.

A proof is represented by a tree whose nodes are sequent formulae. The sequent
formula whose validity we want to prove is the root node. Each edge between the
nodes (sequent formulae) corresponds to the application of a rule. A rule consists
of one or more premises and one conclusion. The application of a rule results in as
many new formulae as the rule has premises. The premises lead to different branches
in the proof tree. The leafs of the branches contain in the best case the axioms. In

31Taken from [HPRW06], Section 4.
32See [Fit96], Section 6.6 for further information on Gentzen-sequent calculi.

42 CHAPTER 3. FOUNDATIONS

cases where we are not able to prove the formula, we receive a set of formulae which
are not axioms. These leafs are called open goals.

Reasons for not being able to close a proof can be either that the formula we
want to prove is not valid or the set of calculus rules is insufficient for this proof.

We describe proof trees in Definition 3.3333. The formulae in the proof-tree nodes
are sequent formulae, whose formal definition34 follows.

Definition 3.32 (Sequent, Antecedent and Succedent). A sequent formulae or se-
quent is a pair of sets of formulae written as

ϕ1, . . . , ϕm ñ ϕ1, . . . , ϕn.

The set of formulae ϕi on the left of the sequent arrow “ñ” is called the antecedent,
the set of formulae ψj on the right the succedent of the sequent. We use capital
Greek letters to denote several formulae in the antecedent or succedent of a sequent,
so by

Γ, ϕñ ψ,∆

we mean a sequent containing ϕ in the antecedent, and ψ in the succedent, as well
as possibly none or many other formulae contained in Γ, and ∆.

Intuitively, sequent formulae can be considered as implications. We can read
them like “If all of the formulae in the antecedent are true, then at least one of the
formulae of the succedent is true”. Or written as formula:

ϕ1 ^ � � � ^ ϕm Ñ ϕ1 _ � � � _ ϕn

To satisfy the formula, we either have to find a model that makes at least one
formulae of the antecedent false or at least one of the formulae of the succedent
true.

Definition 3.33 (Proof Tree). A proof tree is a finite tree (shown with the root at
the bottom), such that

• each node of the tree is annotated with a sequent;

• each inner node of the tree is additionally annotated with a name of those calculus
rules, defined in Section 3.3.1 and Section 3.3.2, that have at least one premiss.
This rule relates the node’s sequent to the sequents of its descendants; and

• a leaf node may or may not be annotated with a rule. If it is, it is one of the
rules that have no premises, also known as closing rules. The sequent in the leaf
then is called an axiom.

A proof tree for a formula ϕ is a proof tree where the root sequent is annotated
with ñ ϕ. A branch of a proof tree is a path from the root to one of the leaves. A
branch is closed if the leaf is annotated with one of the closing rules. A proof tree is
closed if all its branches are closed, i.e., every leaf is annotated with a closing rule.
A closed proof tree (for a formula ϕ) is also called a proof (for ϕ).

33This definition is taken from [BHS07], Definition 2.50.
34Definition 2.42 of [BHS07] was the guideline for this definition.

3.3. WHILE DL CALCULUS 43

3.3.1 Calculus Rules

A calculus provides a set of calculus rules. In this section, we will introduce the
most important rules for a dynamic-logic calculus. It is possible to define many
more rules, but we just want to give a rough idea of the inner workings of a calculus
rather than a detailed specification.

The presented rules are necessary to deal with While programs. The most
relevant rules for our approach are the invariant rules for loops which we present in
Section 3.3.2.

In the presentation of the calculus rules, some of the occurring formulae are
preceded by an update, which is in general denoted by U . The update is used
to store intermediate states of the program. In a rule, the set of formulae in the
antecedent and succedent which are not touched by the rule are denoted Γ and ∆.
These three entities U , Γ and ∆ are called the context of the sequent. There are
rules, which require some of the premises to leave out the context. We will state
this case explicitly in the description of an affected rule. An example for such a rule
is the invariant rule invRule in Figure 3.8.

First Order Rules In Figure 3.3, we show a set of rules to handle formulae
which are built from the classic first-order connectives like ^ and Ñ. Formulae in
dynamic logic can have preceding updates, for example ϕ � Uϕ1. For all rules we
state explicitly which formulae have updates and which not, because otherwise they
would be unsound.

There is one rule for the occurrence of a connective for each side of the sequent
formula. In Figure 3.4, we state the set of classical first-order closing rules, which
can be used to close a proof branch.

Note 3.34 (Substitution Only by Rigid Terms). We demand that free variables are
only substituted by rigid terms by the rules, because free variables can also occur
in updates or modalities. This restriction is made for convenience reasons, because
otherwise certain properties of substitions35 do not hold anymore and therefore the
calculus became more complex.

Note, that the rules allLeft and exRight are slightly enhanced versions of the rules
compared to classical first-order calculi36, because in those rules, skolemization is
performed and this process has to collect the free variables that occur in a quantified
formula to ensure soundness. These free variables are then the inputs of the newly
introduced function symbols. In calculi which only work with closed formulae, this
is not necessary.

Equality Rules The idea of the equality rules is, whenever an entity of a formula
equals another one, we can substitute one of them for the other in every occurrence.
In the presence of a type system, we have to be careful with substitutions of terms.
Therefore we do not introduce the common equality rule of traditional text books,

35See [Fit96] for an introduction to substitution.
36Compared to the calculus in [HKT00], for example.

44 CHAPTER 3. FOUNDATIONS

Γ, ϕ, ψ ñ ∆

Γ, ϕ^ ψ ñ ∆
andLeft

Γ ñ ϕ,∆ Γ ñ ψ,∆

Γ ñ ϕ^ ψ,∆
andRight

Γ, ϕñ ∆ Γ, ψ ñ ∆

Γ, ϕ_ ψ ñ ∆
orLeft

Γ ñ ϕ, ψ,∆

Γ ñ ϕ_ ψ,∆
orRight

Γ ñ ϕ,∆ Γ, ψ ñ ∆

Γ, ϕÑ ψ ñ ∆
impLeft

Γ, ϕñ ψ,∆

Γ ñ ϕÑ ψ∆
impRight

Γ ñ ϕ,∆
Γ, ϕñ ∆

notLeft
Γ, ϕñ ∆

Γ ñ ϕ,∆
notRight

Γ, @x ϕ, rx{tspϕq ñ ∆

Γ, @x ϕñ ∆
allLeft

with t P T rigid and ground

Γ ñ rx{fpX1, . . . , Xnqspϕq,∆

Γ ñ @x ϕ,∆
allRight

with f P F fresh with output type σpxq
and tX1, . . . , Xnu � fvpϕqztxu

Γ, rx{fpX1, . . . , Xnqspϕq ñ ∆

Γ, Dx ϕñ ∆
exLeft

with f P F fresh with output type σpxqand tX1, . . . , Xnu � fvpϕqztxu

Γ ñ Dx ϕ,Urx{tspϕq,∆
Γ ñ Dx ϕ,∆

exRight

with t P T rigid and ground

Figure 3.3: First-order Rules

Γ, false ñ ∆
closeFalse

Γ ñ true,∆
closeTrue

Γ, ϕñ ϕ,∆
close

Figure 3.4: First-order Axioms

3.3. WHILE DL CALCULUS 45

Γ, t1 � t2, rz{t1spϕq, rz{t2spϕq ñ ∆

Γ, t1 � t2, rz{t1spϕq ñ ∆
eqLeft

if σpt2q � σpt1q

Γ, t1 � t2 ñ rz{t2spϕq, rz{t1spϕq,∆

Γ, t1 � t2 ñ rz{t1spϕq,∆
eqRight

if σpt2q � σpt1q

Γ, t2 � t1 ñ ∆
Γ, t1 � t2 ñ ∆

eqSymmLeft
Γ ñ t � t,∆

eqClose

Figure 3.5: Equality Rules

but add several rules to handle equality while taking care of the types. Figure 3.5
states the different rules for equality.

Rules for Handling Arithmetic Because the logic contains the algebraic func-
tions like for example “�” and “�”, we need rules to deal with arithmetic. Such rules
apply for example the distributive or the commutative law on terms. We do not
state any arithmetic rules explicitly here, but assume that they exist in the calculus.
The interested reader may have a look at [Rüm07].

Note 3.35 (Division by Zero). Division by zero is handled in the calculus as follows.
If a number is divided by zero, the result is NaN, an explicit value for “not a number”.
The application of mathematical operations NaN leads to the result of NaN as well37.

NaN � a � a � NaN � NaN

for a P t. . . , -1, 0, 1, . . . , NaNu and � P t�, {,%,�u. The same holds for the unary
minus operation,

�NaN � NaN.

If NaN is compared with ,¤,¥,¡,�, �� to a number, then the result is false. For
the comparison operation holds

NaN � NaN � true

for � P t�,¤,¥u and

NaN � NaN � false

for � P t , ��,¡u.

37This definition for the handling the division by zero does not comply to how the theorem
prover KeY handles it, which we used in our implementation. We chose this definition different
from KeY, because otherwise we had to include exceptions into the While language, since Java
programs raise an exception when a division by zero occurs. Because division by zero is not
a problem in any of our example programs we abstain from quoting a full description and just
assume that its definition is sound and consistent.

46 CHAPTER 3. FOUNDATIONS

Γ ñ Urpsϕ,∆ Γ ñ Uxpytrue,∆

Γ ñ Uxpyϕ,∆ diamondToBox

Γ ñ Uϕ,∆
Γ ñ Uxyϕ,∆ emptyDiamond

Γ ñ Uϕ,∆
Γ ñ Ursϕ,∆ emptyBox

Figure 3.6: Rules for Modalities

Modalities The rules emptyDiamond and emptyBox (Figure 3.6) simply remove
the empty modalities from the formulae. The rule diamondToBox (Figure 3.6) splits
up the proof of total correctness into the branches of the termination and partial
correctness38. See Note 3.30 for details on total and partial correctness.

Symbolic Execution

Because dynamic-logic formulae can contain programs, the calculus has to be able
to deal with them. For this purpose, we introduce a number of rules for symbolic
execution. The idea behind those rules is to reduce formulae which contain programs
more and more until a first-order formula remains, which then can be handled by the
first-order calculus rules. The reduction of programs is done by symbolic execution,
which is a technique introduced by [Kin76].

The proof procedure performs symbolic execution of a program by performing
the action which is described by the first program statement. Programs in formulae
are this way reduced further and further, and the information is saved in state
descriptions and case distinctions. State descriptions in our calculus are saved in
updates (Definition 3.5) and case distinctions are made by branching.

All rules which deal with programs are applied to the active statement, which
is the first statement of the program. The rules only perform their action on this
statement, usually resulting in a sequent formulae that contains a program which
is reduced by this statement. This means that the proof moves forward to the
next statement of the program. The rest of the program, which is not the active
statement, is denoted by ω in the calculus rules.

When the symbolic execution is performed, more and more information is stored
in updates. The calculus transforms every set of updates into a parallel update39.
These transformations are done by calculus rules as well. For the sake of brevity, we
will abstain from stating these rules explicitly here and refer the interested reader
to [BHS07], Section 3.6.

Assignments The way we defined programs in Definition 3.10 excludes the ap-
pearance of expressions with side-effects, which makes dealing with assignments in
the calculus easy. The only necessary rule for dealing with assignments is thus the

38This rule is too strict for non-deterministic programs, but this fact is not relevant for our work,
because the considered programming languages in this work are all deterministic.

39This transformation is always possible, see [Rüm06].

3.3. WHILE DL CALCULUS 47

Γ ñ Utloc :� valuxωyϕ,∆

Γ ñ Uxloc � val; ωyϕ,∆
assignment

Γ,Use � true ñ Uxp ωyϕ,∆ Γ,Use � false ñ Uxq ωy ϕ,∆
Γ ñ Uxif (se) { p } else { q } ωyϕ,∆ ifElseSplit

Figure 3.7: Rules for Symbolic Execution

rule assignment in Figure 3.7. It simply turns the assignment into an update of the
program variable.

Conditionals Because if-then-else statements are included in the While lan-
guage, we need rules to handle them. The most intuitive one is the rule ifElseSplit
in Figure 3.7, which literally splits up the proof tree into a branch where the if

condition evaluates to true and one where it does not.

Note 3.36 (Rules all Types of Modality and Antecedents). For program statements
in the rules which we described so far, it does not make a difference if the program
is in a box or a diamond modality. It would only matter if there is a chance that
the program does not terminate, but this risk only exists for loops. Therefore
assume that we have all calculus rules so far for both types of modality, the diamond
modality and the box modality.

The same applies for the rules of which we showed only a version where the
affected formula is in the succedent of the sequent. Assume that we have a respective
rule for the occurrence of the formula in the antecedent as well.

The next section will deal with calculus rules for loops. Assume that the rule
loopUnwind exists also for the antecedent and the box modality. The other loop
rules, namely all invariant rules occur in the calculus only in the very version which
we present here. For those rules it actually matters in which type of modality the
program is.

3.3.2 Particular Calculus Rules for Loops

There are two ways to deal with loops in this calculus, unwinding or using an
invariant.

Unwinding a Loop We unwind a loop using the rule loopUnwind in Figure 3.8.
Of course, this is only possible for a limited number of iterations, thus not applicable
for loops whose number of iterations is not specified in the beginning. This rule is
often used in combination with induction, but we will not examine this approach
any further in this work.

Invariant Rule In case that the loop is in a box modality we can apply the
invariant rule invRule. The idea behind this rule is, if we have a formula inv , which

48 CHAPTER 3. FOUNDATIONS

Γ ñ Uxif (e) { p while (e) { p } } ωyϕ,∆
Γ ñ Uxwhile (e) { p } ωyϕ,∆ loopUnwind

Γ ñ U inv ,∆
inv , se � true ñ rpsinv
inv , se � false ñ rωs ϕ

Γ ñ Urwhile (se) { p } ωsϕ,∆ invRule

Γ ñ U inv ,∆
inv , se � true ñ xpyinv
inv , se � false ñ xωyϕ

c � t, se � true ñ xpxt c

Γ ñ Uxwhile (se) { p } ωyϕ,∆ invRuleTerm

Figure 3.8: Loop Rules

is an invariant, then we can use it to prove the property behind the modality. To
do so, the invariant must be chosen in a way that the proof branches of all of these
three premises can be closed:

• The invariant must be initially valid. That means, the program state which is
reached when we execute the program until right before the while statement
must fulfill the invariant inv . This is expressed in sequent Γ ñ U inv ,∆. U is a
parallel update describing the state of the program right before the loop and Γ
and ∆ are the other formulae that have been in the initial sequent. The formula
U inv simply means that inv holds after the execution of the program up till the
loop. The branch which originates from this premiss is called init-branch.

• The invariant must indeed be an invariant. That means if the invariant and
the loop condition hold, then, after one execution of the loop body (which is
done for sure because the loop condition holds), the invariant holds again. This
basically says that an arbitrary execution of the loop cannot make the invariant
false. Note that the second premiss must have no context, namely formulae like
Γ and ∆ of the initial sequent nor an update U , because this premiss must hold
for any execution of the loop body. If we would include a context, we could not
be sure that the information of the context is correct for an arbitrary iteration.
The branch which originates from this premiss is called body-branch.

• The invariant and the negated loop condition imply the property ϕ. This premiss
says that in case the end of the loop is reached (that is when the loop condition
becomes false), then the invariant implies the property ϕ, which is the one we
want the program state to fulfill after the execution of the loop. Note, that also
here we have to leave out the context U , ∆ and Γ of the sequent to make sure
that this holds for an arbitrary iteration of the loop. The branch which originates
from this premiss is called use-case-branch.

3.3. WHILE DL CALCULUS 49

context(int n) {

int a = -1;

while (0 < n) {

n = n+a;

}

return n;

}

Figure 3.9: Context
This program’s correctness is provable with the
rule invRuleMod but not with the rule invRule.

The question is which invariant to use. This is not answered by the calculus and
the user has to provide it by herself. For partial correctness proofs, this problem is
addressed in this work.

Invariant Rule for Total Correctness In case the program is in a diamond
modality, in contrast to the case above, we additionally have to prove that the loop
will terminate for sure. In case of the box modality it was only necessary that the
property ϕ is fulfilled if the execution terminates. In case it does not terminate,
the formulae with the box modality would hold anyway. To prove the termination
of a loop we add another premiss to the invariant rule and thus create the rule
invRuleTerm in Figure 3.8. The other three premises are the same as for the box
modality.

The sequent
c � t, señ rpst c

introduces a term t. This term has to be of a type whose domain is ordered and
well-founded. The premiss then states that with each iteration of the loop body the
valuation of the term t decreases. Because a well-founded ordering means that no
infinite descending chains exist, the term t must finally reach a minimum element.
When this element is reached, the term cannot decrease any further and thus the
loop terminates. Like the invariant, the termination term t has to be provided by
the user.

Improved Invariant Rule with Modifier Set The two invariant rules which we
presented so far come with the drawback that in some of the premises the information
of the context U , ∆ and Γ is dismissed. This is necessary, because the formulae in
those branches must hold for any iteration.

Actually, it is not necessary to remove all this information. Consider the example
program in Figure 3.9. The input variable n is decreased in every iteration until 0
is reached. Assume, that we want to proof that the result of the function is always
0, if n was positive in the beginning. The proof obligation would be

pn ¡ 0q Ñ rloop(n);spn � 0q

The construction of the proof makes the application of the invariant rule invRule
necessary. The formula 0 ¤ n sounds like a suitable invariant for this problem. After

50 CHAPTER 3. FOUNDATIONS

the application of the invariant rule, we yield the following premises.

0 nñ ta :� �1u 0 ¤ n

0 ¤ n, 0 n � true ñ rn=n+as 0 ¤ n

0 ¤ n, 0 n � false ñ 0 � n

0 nñ ta :� �1urwhile (0 n) { n=n+a; }spn � 0q
invRule

Whereas the first and the third premiss can easily be proven, we encounter a problem
at the second one. Without the information a � �1, we cannot prove that the
addition of a to n does not violate the invariant 0 ¤ n. This premiss would for
example not hold for n � 1 and a � �5. Thus, the information of the value of a is
essential.

If we include the formula a � �1 in the invariant, the proof can be closed. It is a
common problem that such information about variables which are not changed in the
loop condition blows up the invariant. The invariant is “polluted” by information
what the loop does not do in contrast to what it actually does.

If we included the information about the variable a in the context in the second
premiss, we would be able to solve the problem. We actually can do that, because a
is not manipulated in the loop body, which means the initial value of a is the same
throughout all iterations. We call the set of variables which is actually changed
in the loop body modifier set. In the example, the modifier set only contains the
variable n. The formal definition40 of modifier sets follows.

Definition 3.37 (Syntax of Modifier Sets). Let pVl,Vp,F ,P , αq be a signature for
the type set T . A modifier set Mod � tx1, . . . , xnu � Vp is a set of program variables.

Definition 3.38 (Semantics of Modifier Sets). Given a signature pVl,Vp,F ,P , αq,
let M � pD, δ, Iq be a model, β a logical variables assignment and p a program. A
pair of states pγ1, γ2q � SM � SM satisfies a modifier set Mod

ps1, s2q |ù Mod

iff, for all v P Vp the following holds:

γ1pvq �� γ2pvq ñ v P Mod .

The modifier set Mod is correct for the program p, if

pγ1, γ2q |ù Mod

for all state pairs pγ1, γ2q, for which

γ2 �� s8

and
γ2 � JpKMpγ1q.

40The definitions for the syntax and semantics are loosely inspired by Definitions 3.61 and 3.62
of [BHS07].

3.3. WHILE DL CALCULUS 51

A minimal modifier set of a program contains only the variables which are actu-
ally changed in the program and nothing more.

Definition 3.39 (Minimal Modifier Set). Let p be a program. A minimal modifier
set Modp of a program p does not contain any variables v P Vp for which:

γ1pvq � γ2pvq

for all pairs of states pγ1, γ2q P S � S, where γ1 is a start state of the program and
γ2 is the result state of the program.

The idea behind the improved invariant rule is to maintain the context of the
sequent as much as possible. That means we keep all variable assignments, but erase
the contents of variables in the modifier set. This erasing is done via anonymizing
updates. Anonymizing updates have the same form as normal updates (see Defini-
tion 3.5), except that they assign a value which is fixed, but unknown. The formal
definition41 for anonymizing updates with respect to modifier sets follows.

Definition 3.40 (Anonymizing Update). Let pVl,Vp,F ,P , αq be a signature for the
type set T , a While program p, a sequent Γ ñ ϕ,∆, an invariant ϕ (and for the
rule invRuleTerm also a term t) be given. For every v P Vp occurring in p or in
Γ Y ∆ Y tϕu let v� P F be a fresh function symbol (fresh with respect to p and
ΓY∆Y tϕu) of the same type as v. Then the update

v :� v�pX1, . . . , Xnq

is called anonymizing update for the sequent Γ ñ ϕ,∆. The inputs X1, . . . , Xn

are the free variables of the formulae and updates inv ,U and ϕ (and t)42. In the
following we abbreviate an anonymizing update with U�.

Definition 3.41 (Anonymizing Update w.r.t. a Modifier Set). Let pVl,Vp,F ,P , αq
be a signature for the type set T , a modifier set Mod, a sequent Γ ñ ϕ,∆, an invari-
ant ϕ (and for the rule invRuleTerm also a term t) be given. Then the anonymizing
update with respect to the modifier set Mod, U�pModq is a parallel update

u1 || . . . || un

with uv being an anonymizing update for each of the variable v P Mod.

With this notion of anonymizing updates, we can form a new invariant rule
invRuleMod. This rule keeps the context of the initial sequent, but introduces an
anonymizing update with respect to the minimal modifier set of the program p in
the loop body of the loop. The rule is shown in Figure 3.10.

This improvement can also be done to the invariant rule for the diamond modality
invRuleTerm. The modified rule is the rule invRuleTermMod in Figure 3.10. With
this modified invariant rule, it is no problem to prove the correctness of the example
program in Figure 3.9.

41This definition is taken from [BHS07], Definition 3.64.
42This collecting of variables is necessary when working with metavariables to ensure the sound-

ness of the calculus rules.

52 CHAPTER 3. FOUNDATIONS

Γ ñ U inv ,∆
Γ,Ainv ,Ase � true ñ Arps inv ,∆

Γ,Ainv ,Ase � true ñ Aϕ,∆
Γ ñ Urwhile (se) { p }s ϕ,∆ invRuleMod

Γ ñ U inv ,∆
Γ,Ainv ,Ase � true ñ Axpy inv ,∆

Γ,Ainv ,Ase � false ñ Aϕ
Γ,Ac � t,Ase � true ñ Axpy t c,∆

Γ ñ Uxwhile (se) { p }y ϕ,∆ invRuleTermMod

where A � UU�pModq and Mod is a correct modifier set for p.

Figure 3.10: Invariant Rules with Anonymous Updates

gaussCorrect(int n) {

int i = 0;

int res = 0;

if (n > 0) {

while (i < n) {

res += i;

i++;

}

}

return res;

}

Figure 3.11: GaussCorrect
This program calculates the Gaussian sum,
namely the sum of all integers between 0 and
the value of the input variable n. The program
does terminate for all inputs.

3.3.3 Example Proof

Now that we have all necessary calculus rules, we show a nearly complete example
proof. We say “nearly”, because we will leave out some steps which represent some
obvious algebraic transformations. The program which we want to reason about is
the program GaussCorrect which is shown in Figure 3.3.3. The program sums
up all numbers between zero and the value of the input variable n. This is called
the Gaussian sum and Carl Friedrich Gauss is known to have found the following
concise expression for this sum as a 12-year-old.

ņ

i�0

i �
npn� 1q

2
(3.1)

We prove that the calculation of the Gaussian sum in our example program is
according to this formula. Thus, we form the proof obligation

n ¡ 0 Ñ xr = gaussCorrect(n);y r � n � pn� 1q{2. (3.2)

3.3. WHILE DL CALCULUS 53

The construction of the proof begins with symbolic execution of the program.
Because the first two statements of the program are assignments, we apply the rule
assignment twice and yield a parallel update for the variables i and res. The proof
so far looks like this (to be read from bottom to top).

n ¡ 0 ñ ti :� 0 || res :� 0uxif (n > 0) { . . . }y r � n � pn� 1q{2

n ¡ 0 ñ ti :� 0uxint res = 0; . . .y r � n � pn� 1q{2

n ¡ 0 ñ xint i = 0; . . .y r � n � pn� 1q{2

n ¡ 0 ñ xr = gauss(n);y r � n � pn� 1q{2 (3.3)

At this point in the proof construction, the active statement of the program is
the if-statement. We apply the ifElseSplit rule and the proof branches into these
two branches:

n ¡ 0, n ¡ 0 ñ
ti :� 0 || res :� 0uxwhile (i < n) { . . . }y r � n � pn� 1q{2

(3.4)

and

n ¡ 0, n ¤ 0 ñ ti :� 0 || res :� 0uxy r � n � pn� 1q{2. (3.5)

We will first explore the branch of sequent (3.5), because it is the shorter one.
After the application of the ifElseSplit rule, the program is reduced to an empty

modality xy, which we can remove via the rule emptyDiamond.
The sequent contains the two formulae n ¡ 0 and n ¤ 0. The first one is

equivalent to 1 ¤ n. This formula together with n ¤ 0 can be used to derive the
formula 1 ¤ n ¤ 0, thus 1 ¤ 0, which is of course equivalent to false. Once, there is
the formula false in the antecedent, we can apply the closing rule closeFalse to close
the branch. Without the intermediate steps for the handling of the arithmetic, the
proof branch looks like this (to be read from bottom to top).

1 ¤ n, n ¤ 0, false ñ ti :� 0 || res :� 0u r � n � pn� 1q{2

1 ¤ n, n ¤ 0, 1 ¤ 0 ñ ti :� 0 || res :� 0u r � n � pn� 1q{2

1 ¤ n, n ¤ 0 ñ ti :� 0 || res :� 0u r � n � pn� 1q{2

n ¡ 0, n ¤ 0 ñ ti :� 0 || res :� 0uxy r � n � pn� 1q{2 (3.6)

Now we go back to sequent (3.4), which was the sequent

n ¡ 0 ñ ti :� 0 || res :� 0uxwhile (i < n) { . . . }y r � n � pn� 1q{2.

The while statement is the active statement, which means we have to apply
the rule invRuleTermMod. We choose the second one to show the application of the
invariant rule with a modifier set. The context of the sequent is here:

Γ � tn ¡ 0u
U � ti :� 0 || res :� 0u

∆ � tu
(3.7)

54 CHAPTER 3. FOUNDATIONS

The minimum modifier set of the loop body is Mod � tres, iu. The adequate
anonymizing update is

A � U�pModq � ti :� i� || res :� res�u, (3.8)

where i� and res� are freshly introduced function symbols.
For the application of the rule, we need an invariant inv and a ranking term t.

A suitable invariant is

inv � res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n (3.9)

and an adequate ranking term is

t � n� i. (3.10)

The reader might wonder why those two things are suitable for the proof. The
answer is, because they actually work. Finding the invariant and the ranking term
are non-trivial tasks. If there is no procedure which provides those, the user has
to find them by herself. Usually this means constructing it by intuition or from
experience. This thesis is about invariant generation, so actually part of this problem
is solved for at least non-termination proofs. But in this case, we go on with the
invariant and ranking term that magically appeared in the proof.

After the application of the invariant rule, we obtain the four sequents:

n ¡ 0 ñ ti :� 0 || res :� 0u inv (3.11)

n ¡ 0,Ainv ,Ai nñ Axres += i; . . . y inv (3.12)

n ¡ 0,Ainv ,Ai ¥ nñ Ares � n � pn� 1q{2 (3.13)

n ¡ 0,Ac � n� i,Ai nñ Axres += i; . . . y n� i c (3.14)

We slightly cheated here, because we did not introduce the result variable r

of the proof obligation, but assumed that we want to proof the post condition
res � n � pn� 1q{2. These branches look pretty ugly so far, but we will reduce the
complexity by dealing with each branch separately43.

The sequent (3.11) says that the invariant has to be initially valid.

n ¡ 0 ñ ti :� 0 || res :� 0u res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n

We apply the update ti :� 0 || res :� 0u and obtain the following sequent. We
have not stated rules for the update application explicitly, but intuitively it is the
transference of the information in the updates into the formula.

n ¡ 0 ñ 0 � 0 � p0� 1q{2^ 0 ¤ 0^ 0 ¤ n

43When applying an automatic theorem prover, it is not reasonable to first finish one branch
before examining the next. Usually, all branches are expanded by iteratively applying one rule to
the first, one to the second and so on. The reason is that some extensions to the proof procedure,
for example the constraint solver, need to have some fairness conditions for all branches. For details
see Chapter 3.4. Because those facts are not relevant here, we examine each branch independently
of the others.

3.3. WHILE DL CALCULUS 55

Unfortunately, a conjunction in the succedent of a sequent requires the proof to
branch. The repeated application of the rule andRight yields the following branches.

n ¡ 0 ñ 0 � 0 � p0� 1q{2 (3.15)

n ¡ 0 ñ 0 ¤ 0 (3.16)

n ¡ 0 ñ 0 ¤ n (3.17)

The formula 0 � 0 � p0 � 1q{2 in the succedent of sequent (3.15) can easily be
shown to be true by the rules for arithmetic. Thus, we obtain the formula true in
the succedent and can close this branch by the rule closeTrue.

Sequent (3.16) was the following.

n ¡ 0 ñ 0 ¤ 0

Again, the formula of the succedent can easily be shown to be true and thus the
branch can be closed by the rule closeTrue.

The third sequent, the sequent (3.17) was this one.

0 nñ 0 ¤ n

The formula 0 ¤ n can be split up into the the disjunction 0 n _ 0 � n. The
disjunction in the succedent can simply be written as two separate formulae. Then
the formula 0 n occurs on both sides of the sequent, which means that we can
close the proof by the application of the closing rule close. These steps look in the
proof tree like this (read from bottom to top).

0 nñ 0 n, 0 � n

0 nñ 0 n_ 0 � n
0 nñ 0 ¤ n (3.18)

With these three branches we have closed the first branch of the application of the
invariant rule.

The second branch of the proof after the application invariant rule, sequent
(3.12), was this one

n ¡ 0,Ainv ,Ai nñ Axres += i; . . . y inv

which is fully written out:

n ¡ 0,
ti :� i� || res :� res�ures � i � pi� 1q{2^ 0 ¤ i^ i ¤ n,

ti :� i� || res :� res�ui n

ñ
ti :� i� || res :� res�uxres += i; . . . y res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n.

In this branch, the symbolic execution of the program is not finished yet. There-
fore we apply the rule assignment two more times and remove the resulting empty
diamond with the rule emptyDiamond. The next step in the antecedent of the sequent

56 CHAPTER 3. FOUNDATIONS

is the application of the update i :� i� || res :� res�. The repeated application
of the rule andLeft makes the parts of the conjunction in the antecedent appear as
single formulae. Eventually, we will apply the update ti :� i��1 || res :� res��i�u
on the formula in the succedent.

. . .ñ res� � i� � pi� � 1q � pi� � 1� 1q{2^ 0 ¤ i� ^ i� ¤ n

. . .ñ ti :� i� � 1 || res :� res� � i�u res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n

. . .ñ ti :� i� � 1 || res :� res� � i�uxy res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n

n ¡ 0, res� � i� � pi� � 1q{2, 0 ¤ i�, i� ¤ n

ñ ti :� i� || res :� res� � i�uxi++;y res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n

n ¡ 0, res� � i� � pi� � 1q{2^ 0 ¤ i� ^ i� ¤ n

ñ ti :� i� || res :� res�uxres += i; . . . y res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n

n ¡ 0, ti :� i� || res :� res�ures � i � pi� 1q{2^ 0 ¤ i^ i ¤ n

ñ ti :� i� || res :� res�uxres += i; . . . y res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n

(3.19)
The resulting sequent contains again a conjunction in the succedent, which makes
the proof branch by the application of the rule andRight. We obtain three branches.

. . .ñ res� � i� � pi� � 1q � pi� � 1� 1q{2 (3.20)

. . .ñ 0 ¤ i� (3.21)

. . .ñ i� ¤ n (3.22)

The sequent (3.20) leads to this sequent.

n ¡ 0, res� � i� � pi� � 1q{2^ 0 ¤ i� ^ i� ¤ n, i� nñ
res� � i� � pi� � 1q � pi� � 1� 1q{2

(3.23)

The formula res�� i� � pi�� 1q � pi�� 1� 1q{2 in the succedent can be transformed
by rules for arithmetic into the formula res� � i� � pi�� 1q{2. The latter also occurs
in the antecedent and thus we can close this branch by application of the rule close.

From the sequent (3.21) we obtain this sequent.

n ¡ 0, res� � i� � pi� � 1q{2^ 0 ¤ i� ^ i� ¤ n, i� nñ 0 ¤ i� � 1 (3.24)

We use rules for arithmetic to close this branch in the following manner. (Read from
bottom to top.)

n ¡ 0, res� � i� � pi� � 1q{2, i� ¤ n, i� nñ �1 ¤ i�,�1 ¥ i�, true

n ¡ 0, res� � i� � pi� � 1q{2, i� ¤ n, i� nñ �1 ¤ i�,�1 ¥ i�,�1 ¤ �1

n ¡ 0, res� � i� � pi� � 1q{2, i� ¤ n, i� nñ �1 ¤ i�,�1 ¥ i�

n ¡ 0, res� � i� � pi� � 1q{2, i� ¤ n, i� nñ 0 ¤ i� � 1, 0 ¡ i�

n ¡ 0, res� � i� � pi� � 1q{2, 0 ¤ i�, i� ¤ n, i� nñ 0 ¤ i� � 1

The sequent (3.22) yields this sequent.

n ¡ 0, res� � i� � pi� � 1q{2^ 0 ¤ i� ^ i� ¤ n, i� n . . .ñ i� � 1 ¤ n (3.25)

3.3. WHILE DL CALCULUS 57

Using the rule andLeft and rules for arithmetic, we can close this branch in a similar
manner as the one of sequent (3.21) using the formulae i� ¤ n and i� � 1 ¤ n.

The third branch of the proof after the application of the invariant rule, sequent
(3.13) yielded the sequent, which states that with the negation of the loop condition
the postcondition holds. Written out the sequent is this one.

n ¡ 0, ti :� i� || res :� res�u res � i � pi� 1q{2^ 0 ¤ i^ i ¤ n ,
ti :� i� || res :� res�u i ¥ n

ñ ti :� i� || res :� res�u res � n � pn� 1q{2

After the application of the updates and the rule andLeft we obtain the following
sequent.

n ¡ 0, res� � i� � pi� � 1q{2, 0 ¤ i�, i� ¤ n, i� ¥ nñ res� � n � pn� 1q{2

From the two formulae i� ¤ n and i� ¥ n, rules for arithmetic can derive the formula
i� � n. This equality is used in the application of the rule eqRight and yields the
formula res� � i��pi��1q{2 in the succedent. This formulae occurs in the antecedent
as well and thus we can close the proof by application of close. Written in the proof,
these operations are represented in this branch (read from bottom to top).

n ¡ 0, res� � i� � pi� � 1q{2, 0 ¤ i�, i� ¤ n, i� ¥ n, i� � nñ res� � i� � pi� � 1q{2

n ¡ 0, res� � i� � pi� � 1q{2, 0 ¤ i�, i� ¤ n, i� ¥ n, i� � nñ res� � n � pn� 1q{2

n ¡ 0, res� � i� � pi� � 1q{2, 0 ¤ i�, i� ¤ n, i� ¥ nñ res� � n � pn� 1q{2
(3.26)

The fourth branch of the proof after the application of the invariant rule starts
with sequent (3.14), which is this one.

n ¡ 0, ti :� i� || res :� res�uc � n� i,
ti :� i� || res :� res�ui n

ñ
ti :� i� || res :� res�uxres += i; . . . y n� i c

After the application of the updates to the formulae of the antecedent we obtain

n ¡ 0, c � n� i�, i� nñ ti :� i� || res :� res�uxres += i; . . . y n� i c

We first continue with the symbolic execution of the program, which changes the
update of the variables res and i. We remove the empty diamond and apply the
update to the formula n� i� c, which yields the formula n� i c� 1 after some
transformations. Then, rules for arithmetic can easily close the branch. Because
of space limitations we abstain from stating all steps explicitly here. (Read from
bottom to top.)

. . .
n ¡ 0, c � n� i�, i� nñ n� i� c� 1

n ¡ 0, c � n� i�, i� nñ n� pi� � 1q c

n ¡ 0, c � n� i�, i� nñ ti :� i� � 1 || res :� res� � i�un� i c

n ¡ 0, c � n� i�, i� nñ ti :� i� � 1 || res :� res� � i�uxy n� i c

n ¡ 0, c � n� i�, i� nñ ti :� i� || res :� res� � i�uxi++;y n� i c (3.27)

58 CHAPTER 3. FOUNDATIONS

With this branch we have closed the last open branch and thus closed the whole
proof. Unfortunately, we cannot display the proof as a tree here because of space
limitations.

3.3.4 Properties of the Calculus

Two important properties of proof systems like a calculus are soundness and com-
pleteness. Soundness of a calculus means: If we can prove the validity of a formula
using the calculus, then the formula is actually valid. Completeness means: For
every valid formula we can prove its validity using the calculus. Soundness is the
more important property, because there is usually less harm in not being able to
prove something than in proving something that is not actually valid.

The presented calculus is sound. The soundness of the calculus can be proven by
proving the soundness of each single rule of the calculus. To do so is beyond the scope
of this thesis and the interested reader is referred to for example [BHS07], various
papers of the Key Project44 and books concerning traditional dynamic-logic, for
instance [HKT00].

The calculus can of course not be complete since it deals with arithmetic. Arith-
metic is inherently incomplete, which Kurt Gödel proved in his incompleteness the-
orem45. Besides the arithmetic, there is the halting problem which would also be
solved, if the calculus was complete. Thus a calculus like ours can never be complete.

Despite this inherent incompleteness, Beckert et al. define a relative complete-
ness, which means that the calculus can prove any formula whose proof does not
require the derivation of a non-provable first-order property ([BHS07], Proposition
3.47).

3.4 Incremental Closure of Proofs

A first-order calculus (and thus also a dynamic-logic calculus) has to handle formulae
with existential quantifiers. This is not a trivial task, because it corresponds to a
search for an adequate term in a possibly large search space. Because quantified
formulae are an essential part of non-termination proofs, we describe how the proof
procedure handles them.

3.4.1 Existentially Quantified Formulae and Metavariables

Have a look at the following example of an existentially quantified formula, which
states a property in the domain of integers.

Dx Dy px� y � 10^ 3 � y � xq

To prove the validity of this formula, we have to find at least one integer valued
term for each of the variables x and y, for which the subformula x�y � 10^3�y � x

44http://www.key-project.org
45See [Göd31].

3.4. INCREMENTAL CLOSURE OF PROOFS 59

Γ ñ Dx ϕ, rx{M spϕq,∆

Γ ñ Dx ϕ,∆
exRightMeta

Γ, @x ϕ, rx{M spϕq ñ ∆

Γ, @x ϕñ ∆
allLeftMeta

where M P Vm is a fresh metavariable.

Figure 3.12: Calculus Rules for the Introduction of Metavariables

holds. Thus, proving the formula is equivalent to a search in the set Dint � Dint.
If we find these terms and instantiate the quantified variables with them, we have
proven their existence and closed the proof.

Because the decision with which term to instantiate the quantified variable is
such a tricky one, most calculi try to postpone it as far as possible to first gain more
information from the rest of the proof. A standard way to postpone the instantiation
is to introduce metavariables46.

The insertion of metavariables replaces the existentially quantified variable and
removes the quantifier. Metavariables are another kind of logical variables. They
are rigid and they stand for a fixed, but not yet specified value. In our calculus,
metavariables are treated in the calculus rules the same way as other logical variables.
They are the only free variables that can occur proofs. The formal definition of
metavariables follows.

Definition 3.42 (Metavariables). Given a signature pVl,Vp,F ,P , αq, the set of
metavariables Vm is a distinguished subset of Vl.

Vm � Vl

We extend the calculus which we described in Section 3.3 by the rules exRightMeta
and allLeftMeta shown in Figure 3.12. These rules insert the metavariables into
formula with existentially quantified variables.

After the instantiation of x with the metavariable X and y with Y , the example
formula looks like the following:

X � Y � 10^ 3 � Y � X

Metavariables have the advantage that the prover no longer has to handle the
bulky quantifiers, and thus can apply much more rules than before. However, post-
poning the decision does not make it disappear. Usually, metavariables are carried
along in the proof construction until the proof procedure either terminates with an
open goal or can close the proof by different means than the instantiation of the
metavariable.

46See [Fit96] for an introduction about metavariables.

60 CHAPTER 3. FOUNDATIONS

In the example, the prover would end up with these open goals.

X � 10 � Y and 3 � Y � X

At this point in the proof, the prover has to perform an instantiation as the only
chance to finish the proof. One strategy is, to substitute the metavariable by some
term and try to close the proof. In case closure is not possible, the prover has to
backtrack and try another term. When using backtracking there must be a limit in
the number of tries, otherwise it is possible that the proof procedure itself does not
terminate. Another drawback of backtracking is that a lot of calculations might be
done over an over again, because the information of tracks that lead to failure of a
proof attempt is not saved and thus not reused.

3.4.2 Incremental Closure of Proofs

Martin Giese described in [Gie01] an alternative approach to this problem, which
removes the need for backtracking. The idea is, to extract requirements for the
substitution of the metavariables from the formulae in open goals and store them as
constraints. The proof procedure closes the proof when compatible and satisfiable
constraints are found which close all branches of the proof at the same time.

Let us illustrate the method with the following example47, where c and d are
constants of type integer and f is a unary function symbol with input type integer.

ñ Dx ppx � c_ x � dq ^ fpcq � fpxqq

A prover which uses our calculus would construct the following proof.

ñ X � c,X � d

ñ X � c_X � d ñ fpcq � fpXq

ñ pX � c_X � dq ^ fpcq � fpXq

ñ Dx ppx � c_ x � dq ^ fpcq � fpxqq

The proof is constructed as far as possible and we can easily read the requirements
for the substitution of the metavariable X to close the proof from the open goals.
Obviously, the substitution tX ÞÑ cu would be the reasonable choice. Following
Giese’s approach, we create unification constraints which describe conditions for X
and attach them to the proof branches. The addition of constraints to the proof
branches is done via calculus rules, which are for example stated in [Rüm08], Section
3.4.

In our example, the proof tree which is enriched by the constraints looks like
this.

rX � cs, rX � ds

ñ X � c,X � d

ñ X � c_X � d

rfpcq � fpXqs

ñ fpcq � fpXq

ñ pX � c_X � dq ^ fpcq � fpXq

ñ Dx ppx � c_ x � dq ^ fpcq � fpxqq

47This example is taken from [Rüm08].

3.4. INCREMENTAL CLOSURE OF PROOFS 61

The constraints of one branch must be considered as disjunctions, so eitherX � c
or X � d (or both) have to be solved. The constraints of different branches are
considered conjunctively, which means in a search for a solution of the constraints
a solution must be found which solves at least one constraint of each branch. Our
example yields the overall constraint:

pX � c_X � dq ^ fpcq � fpXq

After the creation of constraints in the proof construction, we have to check whether
the constraint is solvable. A solution of constraints is a substitution of the metavari-
ables by terms. Fortunately, it is sufficient to know that a solution exists, rather
than finding a particular one, because the metavariables came from the existentially
quantified formulae, which say “There is an x for which ...”.

The idea is to invoke a constraint solver after each creation of constraints (or
after closure of a branch by other means) to check if the constraints are already
solvable. As soon as the constraint solver announces that there is a solution for the
constraints which closes all branches of the proof, the proof procedure closes the
proof with the set of constraints which were solvable. We explain in the succeeding
section, when a set of constraints is solvable.

Because of this possibility to close a proof (branch), we define another notion of
closed proof, namely closed by constraints.

Definition 3.43 (Closed by Constraints). A proof (or proof branch or proof subtree)
is called closed by constraints, if there is a solution for the constraints of all open
branches, which closes all open branches at the same time.

Example 3.44 (Closed by Constraints). Have a look at this formula:

Dx px ¡ 5^ x 23q ^ x � 42, (3.28)

where x is of type int. After the introduction of the metavariable X for x with the
rule exRightMeta, the formula look like this:

pX ¡ 5^X 23q ^X � 42.

We apply the rule andRight two times and yield a proof tree with three branches
with the annotated constraints for the metavariable X.

rX ¡ 5s

ñ X ¡ 5

rX 23s

ñ X 23
ñ X ¡ 5^X 23

rX � 42s

ñ X � 42
ñ pX ¡ 5^X 23q ^X � 42

ñ Dx px ¡ 5^ x 23q ^ x � 42

The constraints of the proof subtree starting with the sequentñ X ¡ 5^X 23
is X ¡ 5 and X 23. These constraints are solvable, because for example X � 10
is a solution of them. Thus, this proof subtree is closed by constraints.

The whole proof tree, starting with sequent (3.28) has the constraints X ¡ 5,
X 23 and X � 42 for the metavariable X. For these constraints, there is no
solution, because no integer can be equal to 42 and smaller than 23. Thus, this
proof tree as a whole is not closed and especially not closed by constraints.

62 CHAPTER 3. FOUNDATIONS

UnificationConstraint ::� unification |
UnificationConstraint^ UnificationConstraint

unification ::� term � term

Figure 3.13: Unification Constraints

LinearConstraint ::� intConstraint
| othConstraint
| LinearConstraint^ LinearConstraint

intConstraint ::� intTerm � intTerm
| intTerm �� intTerm
| intTerm intTerm
| intTerm ¤ intTerm

othConstraint ::� othTerm � othTerm

Figure 3.14: Linear Unification Constraints

Constraint Types

A question is, what kind of constraints to extract from formulae in open goals.
We present two constraint languages whose grammar is shown in this section and
compare them with each other.

Unification Constraints The type of constraints, which is created in [Gie01] are
the simple unification constraints48 which we state in Figure 3.13.

A constraint C � ps1 � t1 ^ . . . ^ sn � tnq is called satisfiable, if a unifica-
tion can be found which serves all unification conditions si � ti. Unification and
substitution are described in detail in [Fit96] and [BS01]. It is decidable, if such
unification constraints are solvable or not. This fact makes them useful for practical
applications.

Linear Unification Constraints Rümmer points out in [Rüm08], that unifica-
tion constraints have shortcomings concerning applications that involve theories like
arithmetic. For example, the constraint solver does not know that 2 � 1 � 1 and
therefore the constraint X � 1� 1^X � 2 will not be solved. Therefore, Rümmer
defines in [Rüm08] the language of linear unification constraints, which involves
integer terms similar as defined in standard first-order logic and linear inequalities.

Figure 3.14 shows the grammar of this constraint language. intTerm is an integer
valued term in Presburger Arithmetic [Pre91], which means it contains the literals
. . . ,�1, 0, 1, . . . and the function symbols � for addition and � for subtraction.
othTerm is a term of an arbitrary other type. The latter is included to handle also

48We quote the definition from [Rüm08].

3.4. INCREMENTAL CLOSURE OF PROOFS 63

non-integer terms, even though in a rudimentary way. In addition, a set of function
symbols with integer or differently typed inputs is defined.

[Rüm08] defines the semantics of these constraints49 similar to the semantics of
the respective terms in first-order logic, for example in the definition of the semantics
of terms, Definition 3.24.

Definition 3.45 (Semantics of Linear Unification Constraints). For a vocabulary
of function symbols and metavariables, a structure consists of

• a domain Dint (the mathematical integers) and Doth (an arbitrary non-empty
set), and

• an interpretation mapping I that maps each function symbol

f : T1 � � � � � Tn Ñ T0, Ti P tint, othu

to a function

Ipfq : IpT1q � � � � � IpTnq Ñ IpT0q

where we write Ipintq :� Dint and Ipothq :� Doth. I is required to map the
symbols �,� and . . . ,�1, 0, 1, . . . to the corresponding operations on Dint.

Given a vocabulary and a structure, a variable assignment is a mapping β that
maps each metavariable X : int to an individual βpXq P Dint and each metavariable
Y : oth to an individual βpY q P Doth.

When a structure and a variable assignment are fixed, we can define how to
evaluate terms and constraints. Evaluation is carried out by a mapping valI,β that
is constructred inductively. The only interesting case is the third line where we
define the meaning of � to be equality on sets (Dint or Doth), and the meaning of
��, ,¤ to be the corresponding predicate on Dint.

valI,βpXq � βpXq

valfpt1,...,tnq � IpfqpvalI,βpt1q, . . . , valI,βptnqq

valI,βps � tq �

"
true valI,βpsq � valI,βptq
false otherwise

valI,βpC ^Dq �

"
true valI,βpCq � true and valI,βpDq � true
false otherwise

where � P t�, ��, ,¤u.

Examples50 for constraints in this language are the following.

49The following definition is taken from [Rüm08], Section 3.2.
50These examples are taken from [Rüm08].

64 CHAPTER 3. FOUNDATIONS

Example 3.46 (Constraints). We declare the functions f, g : int Ñ int, h :
oth � int Ñ oth, c : oth and the metavariables X, Y : int, A : oth. Some lin-
ear unification constraints are

C1 :� X � 5^ 2 � Y � 1 C2 :� hpA, 2q � hphpc, Y q, Y � 1q
C3 :� fp1� 2q � fp3q C4 :� fpXq � gpY q
C5 :� X fpXq C6 :� fpXq fpY q
C7 :� fpXq ¤ fpY q ^X �� Y C8 :� fpXq ¤ fpY q ^X Y

C1, C2, C3 are satisfiable. C4 is not satisfiable, because the ranges of Ipfq and Ipgq
can be disjoint. C5 is not satisfiable, because Ipfq can be the identity. C6 is not
satisfiable, because Ipfq can be constant. C7 is satisfiable, because Ipfq is either
constant (and the values of X, Y can be chosen arbitrary but distinct), or there are
numbers n1, n2 with Ipfqpn1q Ipfqpn2q. C8 is not satisfiable, because Ipfq can
be the function with x ÞÑ �x.

Comparison of Unification and Linear Unification Constraints Linear uni-
fication constraints have the advantage of greater expressiveness, but they come with
the drawback that the decidability of them is unknown so far. In general, any con-
straint language can be used for the purpose of incremental constraint solving, but
there is always the trade-off between the expressiveness and the complexity of the
decision procedure for the satisfiability of the constraints. For example, it would
be possible to even use a non-linear constraint language, if only the satisfiability
problem for this was not so hard.

The KeY prover, which we introduce in Section 3.5, creates linear unification
constraints and uses an implementation51 of Cooper’s algorithm as external decision
procedure for the constraints.

3.5 KeY

This work was carried out in the scope of the Key Project, which is a joint project
of the three European universities Chalmers Technical University in Gothenburg
(Sweden), University of Karlsruhe (Germany) and University of Koblenz-Landau
(Germany). In the project, a theorem prover named KeY is developed, which
forms the base for our implementation (Chapter 6). In this section, we will give a
brief overview over KeY and its features, especially those which were relevant for
our work.

KeY is an interactive theorem prover, designed to reason about programs in
dynamic logic. With KeY, we can verify that programs meet their specifications.
The target programming language is Java Card52, which is a fragment of full
Java53. Specifications of programs can be written in JML, OCL or in KeY’s own
specification language in KeY-syntax.

51http://www.cl.cam.ac.uk/users/jrh/atp/index.thml
52See [Che00] for the specification of Java Card.
53See [GJSB05] for the specification of Java.

3.5. KEY 65

KeY covers all features of Java Card and a few additional ones of full Java.
We will not give a full specification of Java Card, but state the relevant aspects
for our work. KeY can deal among others with the following parts of programs:

• all built-in data types, except floating point numbers double and float,

• functions and arbitrary objects with attributes and methods,

• conditionals, loops

• recursive functions and object methods,

• arrays, lists, trees,

• side-effects of operations, assignments and conditions,

• exceptions.

Thus, KeY covers all features of the two languages which we examine, the While
language and the Heap language, which we will introduce in Chapter 8.

KeY implements a calculus for Dynamic Logic which is called Calculus for KeY
Java Card Dynamic Logic. This calculus covers all rules which we presented in
Section 3.3, but of course includes much more rules to handle all the features which
we stated in the preceding enumeration. The rules which we selected from the KeY
calculus are the relevant ones for our work.

KeY is written in Java 1.4 and runs on all machines providing a suitable runtime
environment.

Termination Analysis in KeY KeY is designed as a theorem prover to verify
full specifications of programs. Specifications can (and mostly do) include the ter-
mination of a program. Thus, KeY provides of course ways to prove termination.
For while loops, these are the invariant rules invRuleTerm and invRuleTermMod,
which we presented in Section 3.3.2. Unfortunately, KeY does not provide the es-
sential parts of this rule, the invariant inv and the ranking term t. Those have to
be provided by the user.

KeY can also construct non-termination proofs. We will describe in Chapter 4,
how non-termination proofs are made in dynamic logic. KeY works according to
this description concerning non-termination proofs.

User Interaction KeY is designed as a semi-interactive theorem prover. Semi-
interactive means, that most of the rule applications in the proof procedure are
done automatically. The choice which rule to use on which sequent formula is made
using powerful and well-adjusted heuristics. However, in some cases, additional
information like invariants or ranking terms have to be provided. KeY comes with
a graphical user interface, which provides ways for the user to insert those additional
information. Figure 3.15 shows a screen shot of KeY’s graphical interface.

In our work, we used KeY exclusively non-interactively. Of course, this restricts
the power of KeY, but it was still sufficiently powerful to serve as a back end for our
implementation. Although KeY is designed as an interactive prover, it provides an

66 CHAPTER 3. FOUNDATIONS

Figure 3.15: The User Interface of the KeY Prover
The user interface of KeY has basically two subwindows. In the window to the left, the
proof tree is shown. The leafs are assigned different colors, depending on whether they are
closed, closed by constraint or open. If the user clicks on one node in the proof tree, the
node is shown in the right window with the information which sequent the node represents,
which constraints are already found and which is the rule that is applied to transform this
node’s sequent to the next node’s one (if any).

automatic mode, which we used in our implementation. For further technical details,
see Chapter 6 about our implementation.

Chapter 4

Non-termination in Dynamic Logic

Using dynamic logic, we can specify all kinds of properties about programs. In
particular, we can make statements about the termination behavior. In this chapter,
we explain how to state the non-termination of a program in a dynamic-logic formula
and how to prove it using the calculus.

4.1 Expressing Non-termination

Interestingly, for the reasoning about non-termination no means of reasoning about
total correctness are necessary. The means for proving partial correctness are suf-
ficient in this situation. In dynamic logic, partial correctness1 of a program is ex-
pressed using the box modality r�s. Typically, we have a formula of the form

rpsϕ,

which expresses “If the program terminates, then it results in a state where ϕ holds”.
This formula does not require the program to actually terminate. If it does not
terminate, the formula holds anyway.

If we merely want to express that the program does not terminate without any
postcondition, then we simply form the formula

rpsfalse.

This way, the program only can fulfill the formula by not terminating2.
The question how to express non-termination can also be approached from the

other side. A total-correctness formula which demands that a program p does ter-
minate and afterwards fulfill the property ϕ, looks like this.

xpyϕ

A formula which only says that the program p has to terminate (and not demands
any other property), is this one.

xpytrue

1Partial correctness is seen in contrast to total correctness and described in Note 3.30.
2This is correct for While programs and but not completely correct for Heap programs. We

will deal with this problem in Chapter 8, where we introduce Heap programs.

67

68 CHAPTER 4. NON-TERMINATION IN DYNAMIC LOGIC

If we now want to express the non-termination of a program, we can simply negate
this formula and obtain the following one.

 xpytrue

According to the definition of the semantics of dynamic-logic formulae (see Definition
3.29), this formula is equivalent to

rps true

and thus also to

rpsfalse,

which is the formula we presented in the first half of this section.

4.1.1 Non-termination versus Very Long Calculations

Program languages and logics can have different integer semantics. These semantics
can differ in various things, but the relevant ones for our work are the treatment
or occurrence of over- and underflows. Concerning under- or overflows, we can
distinguish basically three different semantics.

1. Classical Mathematical Semantics. Integers, which are defined in the classical
mathematical sense do not have any over- or underflows. A program which
constantly increases an integer variable with this semantics will never reach an
upper limit.

2. Termination at Over- or Underflows. These are semantics, where the set of
integers has an upper and a lower limit and if a program hits these limits, it
terminates with an exception.

3. Cyclic Behavior at Over- or Underflows. This type of semantics sets also an
upper and a lower limit for integers, but programs which reach these limits do
not crash. Instead, if for example the maximum integer is reached, they go on
with the minimum integer and vice versa.

Java implements the third type of semantics for integers. The KeY prover
provides actually all three kinds of semantics so that the user can choose by herself.
For more information on integer arithmetic in KeY see [BS04] or Chapter 12 of
[BHS07].

Whether a program terminates, is dependent on the integer arithmetic that is
used. Consider the program Gauss, which is shown in Figure 2.2.

If the program is started with a negative initial value for the variable n, then the
value will be decreased in each iteration of the loop. Because the only termination
condition for the loop is to encounter n to be zero, the decrease will go on and on
and reach the minimum integer.

In the programs which implement the third type of semantics an underflow would
occur in this situation This means that after another decrease of n the value will be

4.1. EXPRESSING NON-TERMINATION 69

the maximum integer. From there the decrease can continue until the value of 0 is
reached and the loop actually terminates.

Thus a program with the third type of semantics and with an under- or overflow
can terminate without an abrupt termination. Even if this is a long, but terminating
loop, it is not what the programmer actually intended.

In the calculus, which we described in Section 3.3, we use an arithmetic for
integers, which is not the arithmetic of Java. Instead, we use the first type of
semantics, the idealized mathematical arithmetic for integers. This decision leads
to the fact that long loops are identified as non-terminating loops, although they are
actually terminating if we consider While programs as a subset of Java programs.

We came to this decision, because we considered it as a long-term goal to improve
the software development process by providing a method to find bugs in termination
behavior. Because both, long loops and non-terminating loops, are bugs, they both
should be detected by our method.

Another reason for choosing the mathematical definition of integers was that it
makes reasoning about the programs easier. When using the mathematical seman-
tics, we can apply well-studied properties of the mathematical integers.

4.1.2 Stating the Existence of Critical Inputs

There are two types of non-terminating programs. The programs of the first one
do not terminate for all possible inputs and programs of the second one do not
terminate for some inputs. In Section 4.1 we only described how to express the
non-termination of a program of the first type, saying that the formula

rpsfalse

states that the program does not terminate for all possible inputs.

Identifying those programs is of course one of our goals (as described in Section
2.4), but identifying programs of the second type is more interesting, because those
programs are more likely to be realistically written by a programmer.

If we want to express that a program does not terminate for some input values,
we have to create a formula which quantifies existentially over all input variables. Let
us denote ppx1, . . . , xnq as the program p with x1, . . . , xn being its input parameters.
A formula which states that there are input values for which the program does not
terminate is the following.

Dx11 . . . Dx1n tx1 � x11 || . . . || xn � x1nurppx1, . . . , xnqs false,

where x11, . . . , x
1
n are logical variables of the same type as their corresponding pro-

gram variables x1, . . . , xn. We have to introduce those extra logical variables and go
this long way round, because according to the specification of the logic, we cannot
quantify over program variables (see Section 3.2.1).

70 CHAPTER 4. NON-TERMINATION IN DYNAMIC LOGIC

4.2 Non-termination Proofs

According to Section 4.1.2, we can specify the non-termination of a program p for
some inputs as the sequent

ñ Dx11 . . . Dx1n tx1 � x11 || . . . || xn � x1nurppx1, . . . , xnqs false.

To prove these properties, a prover applies calculus rules to construct a proof. It
first introduces metavariables for all existentially quantified variables. The formula
then looks like this

tx1 � X1 || . . . || xn � Xnurppx1, . . . , xnqs false,

where X1, . . . , Xn are the freshly introduced metavariables of the types which corre-
spond to those of their pendants x1, . . . , xn, respectively. This procedure of dealing
with existentially quantified variables is described in Section 3.4 in detail. After the
introduction of metavariables, the prover goes on with the proof construction the
same way as usual.

In the construction of the proof, the program is symbolically executed. The most
important rule application occurs at the point where the symbolic execution reaches
the while statement of the program. At this point, an invariant rule (Section 3.3.2)
is applied with ϕ being the formula false.

To have a closer look at these rules, we quote invRule3 here again.

Γ ñ U inv ,∆
inv , se � true ñ rpsinv
inv , se � false ñ rωs ϕ

Γ ñ Urwhile (se) { p } ωsϕ,∆ invRule

The formula ϕ occurs only in the third premiss of the rule, which is then equivalent
to the formula

inv ñ se

provided that we leave out the rest of the program, ω, because in non-termination
proofs it is not relevant anyway. This sequent formula says that the invariant inv
has to imply the loop condition. If used in a non-termination proof, the invariant
rule has three premises, which exactly match the three criteria of non-termination
invariants in Section 2.5.

After the application of the invariant rule, the proof procedure continues the
proof construction and hopefully can close the proof. Closing the proof usually
requires to deal with the introduced metavariables. In Section 3.4, we presented the
method of incremental proof closure by solving constraints. This method is applied
here and it corresponds to the search for the critical inputs.

3In the non-termination proofs which our software constructed for the examples in this thesis,
the rule invRuleMod was applied and not invRule. Nevertheless, we quote invRule here, because the
properties which we want to talk about hold for this rule in the same way. We just quote this rule,
because it is simpler and thus easier to read.

4.2. NON-TERMINATION PROOFS 71

When applying this method of incremental closure, the metavariables are not
actually instantiated with particular values, but instead solvable constraints are
found, which describe requirements for the input variables to make the program not
terminate. Thus, the search for the critical inputs of a program is transferred into
constraint construction and the problem of checking the solvability of the constraints.

Solving the problem of finding the critical inputs with constraints has the ad-
vantage of that not only one particular tuple of critical inputs is found, but that the
set of critical inputs is described more generally. This matches our third goal (see
Section 2.4).

4.2.1 Interpretation of Successful Non-termination Proofs

After the successful construction of a non-termination proof, we receive two essential
pieces of information. The first piece is the invariant which is used in the proof and
the second is the set of constraints that is found to close the proof.

Meaning of Invariants. The invariant is an abstract description of a set of pro-
gram states as we introduced it in Section 2.5. It describes the set of states which
is never exited once it is entered in the loop.

Note, that the invariant can also contain metavariables. The information, for
which values the metavariable can be substituted is derived in the constraints which
are also a part of the solution of a non-termination analysis.

The set which corresponds to an invariant of a successful non-termination proof
is not necessarily the only set with these properties nor is the invariant the most
general description of such a set. The simpler the invariant is, the more general is
the description of the set and the more critical inputs are usually covered.

Meaning of Constraints. The prover outputs the constraints for the introduced
metavariables after completion of a proof. The constraints also describe a set of
program states. The set which is described, is the set of start states from which the
program’s execution ends up in an infinite loop. By start state we mean the very
first state which the program’s execution visits and not necessarily the state which
is reached in the execution right before the loop. These two states are the same, if
the loop statement is the first of the program.

4.2.2 Interpretation of Failed Non-termination Proofs

There are situations in which the prover might not be able to close a proof. This
can happen if for instance the invariant did not have the required properties (see
Section 2.5). A failed proof is not completely worthless, because it contains valuable
information about what went wrong in the proof and gives hints for how to solve
these issues.

An open proof constraints at least one branch that has an open goal. Depend-
ing on in which branch the open goal occurs, we can draw different conclusions.
We distinguish the branches according to from which premiss of the invariant rule

72 CHAPTER 4. NON-TERMINATION IN DYNAMIC LOGIC

they originate. The invariant rule invRule4 has three premises which yield three
corresponding proof subtrees.

1. Open Goal in Init-branch. The first premiss of the invariant rule states that the
invariant has to be valid in the program state right before the entrance of the
loop. If there is an open goal in a branch which originates from this premiss, it
means that the invariant describes a set of states, of which none of its elements
is reached with the entrance in the loop. If this is the case, the invariant is
too strong, which means that the refinement process (see Section 2.6) has gone
too far. In this case, there is no point in further refinement of the invariant
candidate.

2. Open Goal in Body-branch. The second premiss of the invariant rule states that
the invariant is valid after the execution of the loop body if it has been valid
before. Open goals in this subtree indicate in which states the loop exits the
set of states which the invariant describes. Information from these goals can be
used to restrict the set of states further, to make it contain only states which are
never left during the loop iterations.

3. Open Goal in Use-case-branch. The last premiss of the invariant rule contains
the implication of the loop condition by the invariant in non-termination proofs.
An open goal in this subtree means that the invariant is not sufficiently strong
to imply the loop condition. The effect is that there might be loop iterations,
where the invariant holds before and after the execution of the loop body (as it
it is supposed to), but the loop terminates because the loop condition does not
hold anymore although the invariant does. Thus, the information of an open
goal here is useful to refine the invariant to make it imply the loop condition.

We finish this section by presenting an example program and discuss an open
goal from the non-termination proof of it.

Example 4.1 (UpAndDown). We show the example program’s source code in
Figure 4.1. It is a simple program with an input variable i and a local variable up.
In case the initial value of i is in the range of 0 to 10, the behavior of the program
makes the value of i go up to 10 and down to 0 over and over again in the iterations
of the loop.

If we try to prove the non-termination of this program by an invariant which is
too general, for example the invariant

i ¥ 0,

the proof procedure fails in closing the proof and results among others in the open
goal

i ¥ 11 ñ,

which originates from the third premiss of the invariant rule, which is the one starting
the use-case-branch. Therefore the open goal means, that the current variable is too

4See Figure 3.8 and its modification invRuleMod in Figure 3.10.

4.3. INVERSE RANKING TERMS 73

upAndDown(int i) {

boolean up = false;

while (0 <= i && i <= 10) {

if (i == 10) {

up = false;

}

if (i == 0) {

up = true;

}

if (up) {

i++;

} else {

i--;

}

}

}

Figure 4.1: UpAndDown
This program lets its input variable i run up to
10 and down to 0 over and over again.

general, because it does not imply the loop condition. That means in case of i

being greater than 11, the loop terminates although the invariant still holds. We
will examine this example further as Example 5.1.

4.3 Inverse Ranking Terms

In this section, we present and discuss an alternative approach to invariants. This
approach is inspired by the ranking terms in partial correctness proofs.

In contrast to non-termination proofs, total correctness proofs require not only
an invariant, but a ranking term. The ranking term is a term containing program
variables, which can be evaluated to an element of a well-founded domain. The
prover tries to prove that the value of the term strictly decreases in every iteration
of the loop. In a well-founded domain, a chain of elements has always a minimum
element. If the value of the ranking term decreases in every iteration, it will even-
tually reach the minimum element and cannot decrease any further. Thus, the loop
terminates5.

We considered adapting the idea of a ranking term to prove non-termination.
The idea is to find an inverse ranking term t, which fulfills the following criteria:

1. t is evaluated to a domain D, which is totally ordered by a relation 6.

2. There is a fixed element c0 P D for which holds: If the value of t is greater than
c0 for a variable assignment β, then the loop condition se holds for the same
variable assignment.

5See the description of the calculus rule invRuleTerm in Section 3.3.2 for further explanation.
6An example for such a domain are the natural numbers with the relation.

74 CHAPTER 4. NON-TERMINATION IN DYNAMIC LOGIC

Γ ñ Ut ¡ c0,∆
t ¡ c0 ñ se � true
c � t, señ rps t ¥ c

Γ ñ Urwhile (se) { p }sfalse,∆ invRuleInverseRanking

where c is a logical variable which did not occur in the proof so far.

Figure 4.2: Calculus Rule invRuleInverseRanking

nonLinearSimple(int i) {

while (i*i > 9) {

i++;

}

}

Figure 4.3: NonLinearSimple
This program is an example for a non-linear op-
eration in the loop condition. It does not termi-
nate if i ¡ 3.

3. The value of t is greater than c0 in the program state from which the program
enters the loop.

4. The value of t increases or stays stationary (but never decreases) with every
iteration.

The second and third criterion ensure that the loop is entered. The second and
fourth criterion make the loop execute over and over again, because the term never
reaches c0 and thus the loop condition always holds. Intuitively, the term is chosen
to “move away” from the termination of the loop.

The calculus rule invRuleInverseRanking in Figure 4.2 expresses the idea of inverse
ranking terms.

Example 4.2 (nonLinearSimple). Figure 4.3 shows a program which does not ter-
minate for all input values greater than 4.

We want to prove that this program does not terminate under the precondition
of i ¡ 4 and therefore we compose the proof obligation:

i ¡ 4 ñ rnonLinearSimple(i);sfalse

Choosing t � i � i as inverse ranking term, the integers as totally ordered domain D
and c0 � 9, the application of the rule invRuleInverseRanking makes the proof branch
into these three branches:

i ¡ 4 ñ i � i ¡ 9
i � i ¡ 9 ñ pi � i ¡ 9q � true

i � i � c, i � i ¡ 9 ñ ri++s i � i ¥ c

i ¡ 4 ñ rwhile (i � i ¡ 9) { i++; }s false
invRuleInverseRanking

We can easily close the branches using calculus rules for arithmetic and symbolic
execution and thus prove the non-termination of the program.

4.4. DIFFERENT KINDS OF INVARIANTS 75

alternatingIncr(int i) {

while (i > 0) {

if (i % 2 == 0) {

i--;

} else {

i = i+3;

}

}

}

Figure 4.4: AlternatingIncr
This program alternatingly increases and de-
creases its input variable i. In total the value is
increased more than it is decreased, which leads
to an endless loop if the initial value of i is pos-
itive.

A closer look at the four criteria reveals that they are actually stricter than they
need to be. It is sufficient to prove that t never reaches c0 instead of demanding
that it never decreases. Thus a program, where t decreases within reason might
not terminate although t misses the fourth criterion. Have a look at the following
example.

Example 4.3 (AlternatingIncr). In the program, whose code we show in Figure
4.4, the value of the input variable i is decreased, respectively increased, when its
value is even, respectively odd. If the program is started with a positive value, it
does not terminate.

Intuitively, we would pick t � i as inverse ranking term, but since the value of i
is alternatingly decreased and increased, t would not fulfill the fourth criterion and
thus we would not be able to prove the non-termination of the program, although
it actually does not terminate.

An alternative calculus rule would weaken the third premiss and look like this.

Γ ñ Ut ¡ c0,∆
t ¡ c0 ñ se � true

t ¡ c0, señ rps t ¡ c0

Γ ñ Uxwhile (se) { p } ωyfalse,∆ invRuleInverseRankingSoft

With this rule we would be able to prove the non-termination of Example 4.3.

Equivalence to the Invariant Rule The rule invRuleInverseRankingSoft actually
is the invariant rule with t ¡ c0 as invariant inv . Thus, the approach of inverse
ranking terms is subsumed by the approach of using invariants for non-termination
proofs.

4.4 Different Kinds of Invariants

Invariants are not only used in non-termination proofs. The calculus rules of Figures
3.8 and 3.10 can also be applied in proofs where other properties of programs are

76 CHAPTER 4. NON-TERMINATION IN DYNAMIC LOGIC

proven. In this section we refer to invariants in those proofs as correctness invariants
to distinguish them from non-termination invariants (see Section 2.5).

These two kinds of invariants have some common properties, but there are also
some essential differences. Invariants of both kinds hold before the loop execution
starts and they are invariants, which means they are preserved during execution of
the loop body.

The essential difference is that non-termination invariants imply the loop con-
dition. This is the crucial point for proving non-termination, which means that
correctness invariants must not have this property. Instead, they are used to con-
clude properties about the program state after the loop execution. Because non-
terminating programs never reach the program statements after the loop, there is
no point in proving any properties of the programs execution after the loop. Thus,
non-termination invariants do not have any further purpose after the loop, whereas
the correctness invariants have.

In our work, we examined a number of proofs and from this experience we con-
clude properties concerning the form of invariants. Non-termination invariants tend
be much simpler formulae than correctness invariants are. This is due to the fact
that non-termination invariants just describe sets of states, whereas correctness in-
variants have to capture information about the manipulation that is done in the
loop in order to prove properties about the program state after the loop. Thus, the
task of invariant generation for non-termination proofs is easier than the invariant
generation of correctness proofs.

Chapter 5

Algorithm

We designed an algorithm which automatically determines, whether a program ter-
minates. It does this by incrementally generating non-termination invariants. We
will start the description by introducing the general idea of the algorithm in the first
section, then show an example as illustration and then give a more detailed insight
to the inner workings of the algorithm. The algorithm is illustrated by examples
throughout the chapter.

5.1 General Idea of the Algorithm

The algorithm can be subdivided into two components: an invariant generator and a
theorem prover for dynamic logic. These components work together in the following
manner.

The input of the algorithm is a program source of the program p containing a
non-nested while loop1 which is to be analyzed for non-termination. x1, . . . , xn are
the input parameters of the program. The algorithm goes through the following
steps.

Initialization

1. The program ppx1, . . . , xnq is inserted in a dynamic-logic formula ϕ, which ex-
istentially quantifies over all possible program inputs and states that there are
program inputs that cause the program to not terminate (see Section 4.1.2).

ϕ � Dx11 . . . Dx
1
n tx1 � x11 || . . . || xn � x1nurppx1, . . . , xnqs false

2. The formula ϕ is given to the theorem prover. The proof procedure is invoked
and constructs a proof tree in which the program is symbolically executed until
the execution reaches the loop.

3. The variable for the invariant candidate is set initially to the formula inv 1 � true.

1This very version of the algorithm works on non-nested loops only, but it can be applied to
nested loops under certain conditions. We describe the generalisation of the algorithm to nested
loops in Section 5.4.

77

78 CHAPTER 5. ALGORITHM

Iteration

4. The proof procedure applies the invariant rule invRuleMod (Figure 3.10), which
we described in Section 3.3.2. The invariant inv which is used in the invariant
rule’s first application is the invariant candidate inv i with i being dependent on
the number of iteration (in the first one it is inv 1 � true, which was set in step
3).

5. The proof procedure keeps on constructing the proof as far as possible without
human interaction.

6. If the proof procedure can close the proof, the algorithm terminates with the
result that the program does not terminate. If the proof cannot be closed, the
algorithm extracts the open goals from the proof and hands them over to the
invariant generator.

7. The invariant generator extracts information from the formulae in the open goals
to refine the invariant candidate, which was used in the application of the in-
variant rule in step 4. That means, the generator creates2 several new invariant
candidates with the help of the open goals and the current invariant candidate
inv i.

The algorithm repeats step 4 to 7 iteratively, using one of the newly created
invariant candidates3 in the invariant rule. The iterations are carried out until one
of these events occurs: a non-termination invariant is found, which means that the
proof was closed with the help of the invariant candidate, the algorithm runs out of
new invariant candidates or a maximum number of iterations is reached.

The algorithm is sketched in Figure 5.1 and given in a condensed way as Java-
like code in Figure 5.2. We talk about the inner workings of the algorithm in more
detail in Section 5.2.

Results of the Algorithm The algorithm has three ways to terminate. If it
terminates by closing a proof, it outputs three pieces of information. It says, that
the input program does not terminate, returns the invariant that is used in the
application of the invariant rule and states the constraints, which were left in the
open goals and which the constraint solver identified as solvable4.

The second way the algorithm can terminate is to run out of invariant candi-
dates. This can happen if all invariant candidates that have been created from the
information in the open goals have been tried in a proof attempt without finding an
invariant which leads to a closed proof. This is usually the case when the invariant
which is needed to make the proof close is too complex to be created by any of our
creation methods.

The last way of the algorithm to terminate is when the number of iterations
reaches an upper limit. This limit is necessary, because we easily constructed pro-

2For the details of the invariant creation step see Section 5.2.
3Which invariant candidate is chosen is described in Section 5.2.
4For detailed description of the application of the constraint solver, see Section 3.4. We talked

about the interpretation of the invariant and the constraints in Section 4.2.1.

5.1. GENERAL IDEA OF THE ALGORITHM 79

Figure 5.1: Algorithm Sketch
This is a sketch of the algorithm. The open goals of a failed proof attempt are taken to
create new invariant candidates for further proof attempts.

grams whose open proofs lead to more and more new invariant candidates without
ever finding one that closes the proof. The introduction of the limit ensures the
termination of our algorithm itself.

We enrich the presentation of the algorithm by some examples. At this point of
the description not every single step is supposed to be fully understandable to the
reader, but we introduce an example here to give a first insight.

Example 5.1 (UpAndDown). We apply our algorithm to the program UpAnd-
Down, which we introduced in Chapter 4 as Example 4.1.

The only invariant up to equivalence that fulfils the three criteria for a non-
termination invariant (Section 2.5), is the formula

0 ¤ i^ i ¤ 10.

We apply the algorithm on this example by going through it step by step.

Initialization

1. The first step is to form the formula which expresses the non-termination of at
least one possible input. For the case of this program, the formula is

ϕ � Di1 ti � i1urboolean up = false; while ...s false

80 CHAPTER 5. ALGORITHM

proveNontermination(Program p) {

// interface to the theorem prover

TheoremProver tp = ...

// invariant generator

InvariantGenerator ig = ...

// formula stating the non-termination of p

Formula phi = formProofObligation(p);

// number of iterations

int noIt = 0;

// maximum number of iterations

int maxIt = [...];

// queue of invariant, initialized with formula "true"

InvariantQueue q;

q.add(new Formula(true));

// current invariant of the iteration

Formula curInv;

while (noIt < maxIt && !q.isEmpty()) {

noIt++;

// pick next invariant from the queue

curInv = q.getNext();

// construct proof

Proof proof = tp.prove(phi, curInv);

// check for result

if (proof.isClosed()) {

print "Success: The program does not terminate.";

}

// new invariants are generated and added to the queue

q.add(ig.generateNewInvs(proof.getOpenGoals(), curInv));

}

// check for kind of failure

if (q.isEmpty()) {

return "Failed: No more invariants to try.";

}

return "Failed: Maximum number of iterations reached.";

}

Figure 5.2: Algorithm in Java-like code.

5.1. GENERAL IDEA OF THE ALGORITHM 81

2. The second step of the algorithm is to let the theorem prover construct a proof
up to the point where the symbolic execution reaches the while loop. As first
step in the proof construction, the quantification of the variable i1 is replaced
by the introduction of the metavariable I. This proof stub is to be read from
bottom to top.

...
ñ ti :� I || up :� falseurwhile . . . s false

ñ ti :� Iurboolean up = false; while . . . s false

ñ Di1ti :� i1urboolean up = false; while . . . s false

3. The initial invariant candidate is set to inv 1 � true.

Iteration no. 1

4. At this point in the proof, the invariant rule invRuleMod is applied using as
invariant candidate the initial one, inv 1 � true. The reduced context is empty.
The proof branches threefold.

ñ ti :� I || up :� falseu true
A true,A 0 ¤ i^ i ¤ 10 ñ A rif (i == 10) . . . s true

A true ñ A 0 ¤ i^ i ¤ 10

ñ ti :� I || up :� falseurwhile . . . s false
invRuleMod

with

A � ti :� i� || up :� up� u.

5. The theorem prover goes on constructing the proof as far as possible. Due to
space limitations, we cannot state the whole proof here, but Figure 5.3, 5.4 and
5.5 show a slightly shortened version of the proof tree.

6. Because the proof tree is not closed, we move on to step 6 of the algorithm. The
open goals of this proof are:

i ¥ 11 ñ and i ¤ �1 ñ

7. The invariant generator examines the open goals and produces the following new
invariant candidates. We will explain the exact details of this procedure in the
succeeding section.

inv 2 � true ^ i 11 and inv 3 � true ^ i ¡ �1

The new invariant candidates are inserted in a queue and the first candidate of
the queue is taken as invariant for a new iteration.

82 CHAPTER 5. ALGORITHM

branch0 branch1 branch2

ñ ti :� I || up :� falseurwhile . . . sfalse

ñ ti :� Iurboolean up = false; while . . . sfalse

ñ Dilti :� ilurboolean up = false; while . . . sfalse

ñ true closeTrue

ñ ti :� I || up :� falseutrue

branch0

ñ 0 ¤ i� ñ i� ¤ 10
true ñ 0 ¤ i� ^ i� ¤ 10

ti � i� || up � up�u true ñ ti � i� || up � up�u 0 ¤ i^ i ¤ 10

branch2

0 ¤ i�, i� ¤ 10, i� � 10,
i� � 0, false ñ . . .

closeFalse

0 ¤ i�, i� ¤ 10, i� � 10,
i� � 0, 0 � 10 ñ . . .

0 ¤ i�, i� ¤ 10, i� � 10, i� � 0
ñ ti � i� || up � falseu
rup = true; . . . s true

branch1010 branch1011

0 ¤ i�, i� ¤ 10, i� � 10, i� �� 0
ñ ti � i� || up � falseu

rif (up) . . . s true

0 ¤ i�, i� ¤ 10, i� � 10
ñ ti � i� || up � falseu
rif (i == 0) . . . s true

0 ¤ i�, i� ¤ 10, i� � 10
ñ ti � i� || up � up�u
rup = false; . . . s true

branch11

ti � i� || up � up�u true, ti � i� || up � up�u 0 ¤ i^ i ¤ 10
ñ ti � i� || up � up�u rif (i == 10) . . . s true

branch1

Figure 5.3: Proof Tree of UpAndDown, Part 1 of 3
This is the proof tree which the theorem prover produces for the (failed) non-termination
proof of the program UpAndDown in the first iteration of the algorithm.

5.1. GENERAL IDEA OF THE ALGORITHM 83

0 ¤ i�, i� ¤ 10, i� � 10, i� �� 0, false ñ . . .
closeFalse

0 ¤ i�, i� ¤ 10, i� � 10, i� �� 0, false � true

ñ ti � i� || up � falseu ri++ . . . s true

branch1010

0 ¤ i�, i� ¤ 10, i� � 10, i� �� 0,ñ true
closeTrue

0 ¤ i�, i� ¤ 10, i� � 10, i� �� 0,
ñ ti � i� � 1 || up � falseutrue

0 ¤ i�, i� ¤ 10, i� � 10, i� �� 0, false � false

ñ ti � i� || up � falseu ri--; . . . s true

branch1011

branch110 branch111

0 ¤ i�, i� ¤ 10, i� �� 10
ñ ti � i� || up � up�u rif (i = 0) . . . s true

branch11

0 ¤ i�, i� ¤ 10, i� �� 10,
i� � 0 ñ true

closeTrue

0 ¤ i�, i� ¤ 10,
i� �� 10, i� � 0

ñ ti � i� � 1 || up � trueu
true

0 ¤ i�, i� ¤ 10, i� �� 10,
i� � 0, true � true

ñ ti � i� || up � trueu
ri++; . . . s true

0 ¤ i�, i� ¤ 10, i� �� 10,
i� � 0, false

ñ ti � i� � 1 || up � trueutrue

closeFalse

0 ¤ i�, i� ¤ 10, i� �� 10,
i� � 0, true � false

ñ ti � i� || up � trueu
ri--; . . . s true

0 ¤ i�, i� ¤ 10, i� �� 10, i� � 0
ñ ti � i� || up � trueu rif (up) . . . s true

0 ¤ i�, i� ¤ 10, i� �� 10, i� � 0
ñ ti � i� || up � up�u rup = true; . . . s true

branch110

Figure 5.4: Proof Tree of UpAndDown, Part 2 of 3
See caption of Figure 5.3.

84 CHAPTER 5. ALGORITHM

0 ¤ i�, i� ¤ 10, i� �� 10,
i� �� 0, up� � true

ñ true

closeTrue

0 ¤ i�, i� ¤ 10, i� �� 10,
i� �� 0, up� � true

ñ ti � i� � 1 || up � up�utrue

0 ¤ i�, i� ¤ 10, i� �� 10,
i� �� 0, up� � true

ñ ti � i� || up � up�u
ri++; . . . s true

0 ¤ i�, i� ¤ 10, i� �� 10,
i� �� 0, up� � false

ñ true

closeTrue

0 ¤ i�, i� ¤ 10, i� �� 10,
i� �� 0, up� � false

ñ ti � i� � 1 || up � up�utrue

0 ¤ i�, i� ¤ 10, i� �� 10,
i� �� 0, up� � false

ñ ti � i� || up � up�u
ri--; . . . s true

0 ¤ i�, i� ¤ 10, i� �� 10, i� �� 0
ñ ti � i� || up � up�u rif (up) . . . s true

branch111

Figure 5.5: Proof Tree of UpAndDown, Part 3 of 3
See caption of Figure 5.3.

Iteration no. 2

3.-5. The theorem prover tries to prove ϕ using the invariant candidate inv 2. The
proof cannot be closed and the open goals are:

I ¥ 11 ñ and i ¤ �1 ñ

6. The invariant generator refines invariant candidate inv 2 with the help of the
open goals and we obtain the new invariant candidates inv 4 and inv 5, which are
added to the queue

inv 4 � true ^ i 11^ i ¡ �1
inv 5 � true ^ i 11^ I 11

Iteration no. 3

3.-5. The next invariant in the queue is inv 3. The proof which uses inv 3 in the
invariant rule results in the open goals:

I ¤ �1 ñ and i ¥ 11

6. The invariant generator refines the invariant candidate inv 3 and produces the
new invariant candidates inv 6 and inv 7.

inv 6 � true ^ i ¡ �1^ I ¡ �1

inv 7 � true ^ i ¡ �1^ i 11

Because inv 7 is equivalent to inv 4, it is dismissed and only inv 6 is added to the
queue.

5.2. INNER WORKINGS OF THE INVARIANT GENERATOR 85

Iteration no. 4

3.-5. The next invariant candidate in the queue is inv 4 � true ^ i 11 ^ i ¡ �1.
The theorem prover uses it to construct another proof and this time, the proof
can be closed with the constraints:

�1 I and I 11

Interpretation of the Result The result is to be interpreted as follows. The
constraint says that the initial value of i, which is represented by the metavariable
I, must be between �1 and 11 in order to enter the infinite loop.

The invariant itself describes the set of values of i, which is never left in the exe-
cution of the loop; in this case it is stated by the same conditions as the constraints
for the initial value. The invariant says that the value of i is always between �1
and 11.

In summary, the algorithm terminates with a positive result, announcing that
the program does not terminate for the critical input values between �1 and 11.

5.2 Inner Workings of the Invariant Generator

The invariant generator receives as input the open goals of a failed proof attempt
and outputs a new invariant candidate for the next iteration of the algorithm. The
process of invariant generation goes through four phases, which we will describe in
more detail in the succeeding sections and illustrate in Figure 5.1:

• Creation. In this phase, the incoming open goals are examined and a new in-
variant candidate is created by the refinement of the current invariant candidate
using the information of the open goals.

• Filtering. Because some of the newly created invariant candidates are useless for
the proof of non-termination, they are filtered out by various criteria.

• Scoring. Usually, in each iteration several new invariant candidates are created
and thus lead to the question of which of the new invariant candidates to try
in the next iteration. This problem is solved by assigning a score to each new
invariant candidate and queuing it according to the score.

• Queuing. This phase is merely queuing the new invariant candidates according
to the score they were assigned in the preceding phase.

5.2.1 Creation of Invariants Candidates

The creation step of the algorithm receives a set of open goals g1, . . . , gn as input,
which are sequent formulae of the form Γi ñ ∆i for each goal gi, where Γi and ∆i

are sets of formulae. There are several ways to extract information from open goals.
In general we can say, that each creation method examines the formulae of the

open goals and creates a new formula ρ from it, which is called invariant fragment.

86 CHAPTER 5. ALGORITHM

This invariant fragment is then conjunctively added to the old invariant candidate
to obtain the new invariant candidate.

invnew � inv old ^ ρ

In the version of the algorithm which we present here, all methods of invariant
generation are applied in each iteration, but of course in an actual implementation
the user might choose the creation methods she considers as most effective. In the
Example 4.1, we used only the creation method no 2.

1. Add a Formula of the Succedent. A formulae ϕ P ∆i in the succedent
states a situation where there is a problem with the non-termination proof when
ϕ does not hold. Most often that means that in this situation the loop actually
terminates5. We would like to exclude this situation in the invariant and therefore
we add ϕ conjunctively to the old invariant candidate:

invnew � inv old ^ ϕ

Example 5.2. Assume we are dealing with a program, in whose termination proof
we used the invariant

true ^ k ¡ 0.

The application of the creation method of adding a formula of the succedent on the
open goal

i � 5 ñ i ¥ 3, k ¥ i

yields these two new invariants:

true ^ k ¡ 0^ i ¥ 3
true ^ k ¡ 0^ k ¥ i

2. Negate and Add a Formula of the Antecedent A formula ϕ P Γi in the
antecedent means that there is a problem with the non-termination in the situation
where ϕ holds. Here, the same idea applies as for formulae in the succedent, but in
this case we have to negate it before we add it to the old invariant conjunctively:

invnew � inv old ^ ϕ

Example 5.3. In iteration no 1 of Example 4.1, we obtain the open goals

i ¥ 11 ñ and i ¤ �1 ñ

which are transformed into the following invariant candidates by the creation method
just described.

inv 1 � true ^ i 11
inv 2 � true ^ i ¡ �1

5See Section 4.2.1 for the interpretation of open goals.

5.2. INNER WORKINGS OF THE INVARIANT GENERATOR 87

3. Replacement of Equality in a Formula in the Antecedent by an In-
equality. If there is a formula in the antecedent of the open goals that contains
an equality as topmost operation, i. e. a � b P Γi, then instead of just negating
the formula, we replace the equality by two inequalities and add them to the old
invariant candidate. Thus the newly created invariant candidates with this creation
methods are:

invnew � inv old ^ a ¡ b and invnew � inv old ^ a b

Example 5.4 (Gauss). Figure 2.2 shows a simple program which is supposed to
sum up all integers between 0 and the value of the variable n. This works well unless
the initial value of n is negative. In this case, the value of the variable is decreased
more and more until it reaches an underflow.

Applying the algorithm to this example yields in the first iteration the only open
goal

n � 0 ñ

Applying the creation method no 2 on this formula does not have the desired effect,
because the application of the invariant rule with the invariant candidate inv 2 �
true ^ n �� 0 yields the open goal

n � 1 ñ

Going on adding the formulae n �� 1, n �� 2, . . . will not be an efficient way to
construct a non-termination invariant. Therefore instead of adding n �� 0, we apply
creation method no 3 and add the inequalities n 0 and n ¡ 0 to the invariant and
obtain the new invariant candidates:

true ^ n 0 and true ^ n ¡ 0

Of which the first one leads to a closed proof and thus shows that the program does
not terminate for negative input values.

4. Introducing Metavariables in Inequalities A more aggressive creation
method is to introduce unspecified lower or upper bounds for each occurring term
in an open goal. This is done by introduction of metavariables in the invariant
candidate.

This creation method works in two phases. In a first phase, all integer terms
t1, . . . , tm which occur in the open goals ψ1, . . . , ψn are extracted. In the second
phase for each term ti, two new formulae are created which state that this term is
greater respectively less than a metavariable Li respectively Ui. So for each ti with
i � 1, . . . ,m, we obtain the new invariant candidates:

invnew1 � inv old ^ ti ¡ Li and invnew1 � inv old ^ ti Ui

The metavariables have to be fresh, which means they must not have occurred
in the proof so far. By introduction of the metavariables we say that there is a lower

88 CHAPTER 5. ALGORITHM

while (i > 0) {

if (i > 5) {

i++;

} else {

i--;

}

}

Figure 5.6: UpOrDown
This example program increases the value of the
variable i if it is greater than 5 and decreases it
otherwise. The program does not terminate for
all input values greater than 5.

Iteration no Current Invariant Open Goals
1 true i ¤ 0 ñ
2 true ^ i ¡ 0 i � 1 ñ
3 true ^ i ¡ 0^ i ¡ 1 i � 2 ñ
...
7 true ^ i ¡ 0^ i ¡ 1^ . . .^ i ¡ 5 none

Figure 5.7: Refinement of the Invariant for UpOrDown
This table shows the iteration steps of the algorithm applied on the example program
UpOrDown. A non-termination invariant is found in the 7th iteration.

respectively upper bound, but we do not specify which one. The metavariables
which we introduce this way are treated in the proof procedure as if they came
from existentially quantified variables in the first place6. We exploit the concept of
metavariables to deal with fixed but not yet specified values in proofs to introduce
such unknown bounds.

Example 5.5 (UpOrDown). The program shown in Figure 5.6 contains a loop
that runs for positive values of the variable i.

The application of the algorithm can take the development7 which is shown in
Figure 5.7, if one does only apply the creation methods 1 and 3.

The invariant that is found in the 7th iteration leads to a closed proof, but it is
an unnecessary complex invariant and if the if-condition contained a higher number
than 5, the invariant would have grown even more complex.

When applying the creation method which we just described, we form the in-
variant fragment i ¡ M instead of i ¡ 0, where M is a metavariable that has not
occurred in the proof so far. That means, instead of saying that 0 is a lower bound
for i, we say that there is a lower bound for i, but we do not specify its value yet.

With this creation method the second iteration of the algorithm would apply the

6Metavariables were first introduced to the calculus to handle existentially quantified variables.
The general way to deal with metavariables in proofs is described in Section 3.4.

7We say can, because the order of the application of the creation methods is not specified in
the description of the algorithm and thus might vary in different implementations. Besides that,
we left out some iterations that do not help to find the desired invariant in this case.

5.2. INNER WORKINGS OF THE INVARIANT GENERATOR 89

invariant rule using the invariant candidate:

inv 0 � true ^ i ¡M

With this candidate, the proof can be closed with the following constraints for the
metavariables:

M I ^�1 M ^ 4 M

We can interpret this information as follows (Section 4.2.1). The program does
not terminate for all input values greater than the lower bound M , where M has
to be greater than 4. Or in other words: The program does not terminate for all
program inputs greater than 5.

For the introduction of heuristics for the scoring of invariant candidates, we
need to distinguish the different types of metavariables. We call them start-state
metavariables and invariant metavariables. Those two types are the only kind of
metavariables which can occur in proofs in our algorithm.

Definition 5.6 (Start-state Metavariables and Invariant Metavariables). Start-state
Metavariables are metavariables which are introduced when replacing the exis-
tantially quantified input variables of the program by metavariables. Invariant
metavariables are metavariables which are freshly introduced in creation method
no 4 (Introducing Metavariables in Inequalities).

5. Adding Formulae Disjunctively. Another approach is not to add the newly
created formula conjunctively, but to take a pair of newly created formulae, combine
those disjunctively and add the disjunction conjunctively to the old invariant can-
didate. Thus, this creation method can be considered as a meta creation method,
because it takes the invariant fragments that have been created by the methods 1
to 4 and forms new invariants using them.

Assume, using creation methods 1 to 4 we obtain the formulae ρ1, . . . , ρp as
invariant fragments. For each pair ρik , ρil with 1 ¤ k ¤ p, 1 ¤ l ¤ p, k l we form
the disjunction ρik _ ρil and add it to the invariant:

invnew � inv old ^ pρik _ ρilq

The idea behind this creation method is to be able to handle non-termination proofs
of programs that do not have invariants that can be expressed by a conjunction.
Invariants which can be described as a conjunction are called convex invariants.
The idea can be broadened by forming disjunctions of more than two invariant
fragments, but for simplicity reasons, we limit the number of fragments to two.

Example 5.7 (AlternDivWide). Figure 5.8 shows a program, whose invariant
can be described with a disjunction much more easily than with conjunctions only.
Over the iterations of the loop the absolute value of the variable i increases, but in
every iteration the sign of the value is flipped.

90 CHAPTER 5. ALGORITHM

alternDivWidening(int i) {

int w = 5;

while (i != 0) {

if (i < -w) {

i--;

i = i*(-1);

} else {

if (i > w) {

i++;

i = i*(-1);

} else {

i = 0;

}

}

w++;

}

}

Figure 5.8: AlternDivWidening
This is a program whose input variable i in-
creases and flips the sign in each iteration. It
does not terminate for all input values greater
than 5 or smaller than �5.

Because of the flipping, none of the invariants i ¡M or i �M (for some value
of M) leads to a closed non-termination proof. The possible invariants contain either
a lot of negated equalities or a disjunction. One which covers the most values is

i �5_ i ¡ 5.

Another and uglier one is

i �� �5^ i �� �4^ . . .^ i �� 4^ i �� 5

The first invariant could never be constructed using only the creation methods 1 to
4. By the creation method no 5, this invariant might be constructed.

5.2.2 Filtering of Invariant Candidates

In the invariant creation phase, a lot of invariant candidates are created that are
not helpful in the search of a non-termination invariant. This is due to the fact that
these methods are applied “blindly” without actually examining the old invariant
candidate. Therefore we filter out those candidates which are obviously useless for
various reasons.

5.2. INNER WORKINGS OF THE INVARIANT GENERATOR 91

foo(int i) {

if (i > 20) {

while (i > 10) {

i++;

}

}

}

Figure 5.9: InitNotClosed
This program is an example for that the loop
might not be reached although the loop condi-
tion is fullfilled, for example if i � 15.

1. Equivalence to false A newly created invariant candidate can be equivalent
to the formula false. Because the first property of non-termination invariants is that
the invariant must hold before the loop execution, false is never a good choice.

Example 5.8. Examples for invariant candidates which are equivalent to false are
the following.

invA � true ^ i ¡ 5^ i 6 invB � true ^ i 0^ i ¡ 0
invC � true ^ i � i �3 invD � true ^ i � 0^ i �� 0

with i : int.

2. Equivalence to other Invariants A fresh invariant candidate can be equiv-
alent to a candidate that was already created and especially used in an earlier
iteration. To avoid unnecessary calculations and thus save resources, we filter out
those candidates. Because invariant candidates grow in complexity in each iteration
it is reasonable to save the earliest and thus simplest version of the candidate, all
later occurrences of equivalent candidates are dismissed.

Example 5.9.

true ^ i ¡ 5^ i ¡ 3 is equivalent to true ^ i ¡ 5.
true ^ i � 10^ i �� 0 is equivalent to true ^ i � 10.

3. Impossible Closure of the Init-branch The application of the invariant rule
makes the proof branch threefold. As described in Section 4.2.2, the first branch
proves that the invariant holds when the loop is reached in the execution of the
program.

In the refinement process, invariant candidates might be created that do not
hold in the beginning of the loop. That means they describe a set of states that is
never reached right before the loop is entered. Once we have created an invariant
candidate which prevents the first branch from closing, it does not make sense to
make any more refinement of it, because we only refine candidates by adding new
conditions conjunctively, which reduces the set of program states even more.

92 CHAPTER 5. ALGORITHM

Example 5.10 (InitNotClosed). The program InitNotClosed is shown in
Figure 5.9. It has the loop condition i ¡ 10, but the loop is only reached if i ¡ 20.
In the refinement process, the invariant candidate

true ^ i 15

might be constructed. If the input variable i had a value less than 15, then the
candidate would not hold before the loop because the execution of the program
would already assume that i ¡ 20. The branch in the proof would start with the
sequent

i ¡ 20 ñ i 15

and would not be closable. Under the condition that i fulfills the invariant candi-
date, the loop would not be reached and therefore not be carried out and therefore
terminate trivially. This invariant candidate is filtered out by the filter method no 3.

4. Complexity of the Formula In contrast to the other three criteria for dis-
missing an invariant candidate, this one exists for performance reasons only. In the
application of the algorithm the size of the invariant candidates grows fast. At some
point the candidates become too big to be handled by the theorem prover in a rea-
sonable way. Therefore we introduce filters for invariant candidates that became to
big. The filter can either base its decision on the number of operators in a formula
or on the depth of the formula (if considered as a tree).

5.2.3 Scoring of Invariant Candidates

After the invariants are created and filtered, they are assigned a score. A score is a
real number between 0 and 1 which indicates the probable usefulness of the invariant
candidate for proving the non-termination of the program. There are several criteria
by which the candidates are judged. The overall score of an invariant candidate is
the weighted average of the scores of each criterion, where the weights are assigned
to the criteria to adjust the influence of the different criteria on the scoring.

In this section, we will list and describe the criteria that our algorithm applied.
We also state the reason why we considered them to be useful heuristics. In the
experiments we made, we found out that some of them are less important than
initially presumed. We will discuss the results of the experiments in Chapter 7.

1. Complexity A goal in the design of the algorithm (Section 2.4) was to describe
the set of critical inputs as general as possible. For this reason it makes sense to
prefer simpler invariant candidates to complex ones to make sure that more general
descriptions of the set of critical states are found earlier than others. Therefore the
algorithm judges the invariants by their complexity. This can be done by examining
either the number of operators in a formula or the depth (when considering a formula
as a tree of operators). A simple invariant candidate is then assigned a smaller
number than complex candidates.

5.2. INNER WORKINGS OF THE INVARIANT GENERATOR 93

Example 5.11 (Scores for Complexity). In this example we calculate the score
according to how we implemented it in our software. Note that the way we calculated
the scores here is just one way to calculate it. It is possible to calculate the score
differently, as long as a less complex formula is assigned a smaller score. In this
example calculation the score grows linearly with the number of operators or the
depth. Another way to calculate the score might be some logarithmic or polynomial
approach.

Given the maximum number of operators maxop, the maximum depth maxd, the
actual number of operators numop and the actual depth of the invariant numd the
scores sop concerning the number of operators and sd concerning the number of sd

is calculated as follows.

soppinvq � numoppinv q
maxop

sdpinvq � numdpinv q
maxd

We calculate the scores for two example invariant candidates.

inv 1 � true ^ i ¡ 5 and inv 2 � true ^ i 20^ i � 4 � 20

Assuming that the maximum number of operators of an invariant candidate is
maxop � 20 and the maximum depth is maxd � 10. The number of operators
of inv 1 is numoppinv 1q � 5 and of inv 2 is numoppinv 2q � 11. The depth of inv 1 is
numdpinv 1q � 3 and of inv 2 is numdpinv 2q � 5.

The scores concerning the number of operators sop are then the following.

soppinv 1q � 0.25 soppinv 2q � 0.55
sdpinv 1q � 0.33 sdpinv 2q � 0.5

In both ways to calculate the score, inv 1 has a lower score as inv 2 and is therefore
preferred to it in the queue.

2. Invariant Metavariables The creation methods of introduction of metavari-
ables (method no 4 in Section 5.2.1) is a strong tool (and sometimes the only effective
one) to find the desired invariant. The problem with invariant metavariables is that
in cases where they do not lead to a closed proof, they tend to lead to even bigger
open proofs. That means they feed the explosion of invariant candidates by leading
to proofs with a lot of open goals. It is reasonable to prefer invariant candidates
that do not contain invariant metavariables to those who do contain them in order
to keep the number of newly created candidates as low as possible.

3. Initial-state Metavariables A non-termination proof of a program with at
least one input variable contains at least one initial-state metavariable, because we
quantify existentially over the input variables of the program. The metavariables
stand for the value of the program variable at the beginning of the program. The
variables occur of course in open goals and thus in new invariant candidates as well.

There are programs, which exclusively consist of a loop, which means that the
while statement is the first statement of the program. We call those programs
loop-dominated programs for this section.

94 CHAPTER 5. ALGORITHM

Invariants in non-termination proofs describe the set of program states that is
never left during the execution of the loop. In loop-dominated programs there are no
manipulations of the program variables before the loop. Therefore, the conditions
which the invariants describe apply as much to the initial value of the program
variables as on the values of the program variables in an arbitrary loop iteration.

For example, in a non-termination proof of a program which has one input vari-
able i, the metavariable I is introduced. The algorithm might find out, that the
program does not terminate for values that are greater than 5, thus the invariant
candidate has the form

invnew � inv old ^ i ¡ 5.

If this candidate is not sufficient for closing the proof, another iteration of the
algorithm is carried out. One possible new invariant candidate might be

invnew � inv old ^ i ¡ 5^ I ¡ 5

This is a new candidate, but it does not really contain new information, because
when the value of i must not be less than 5, this does also apply to the variable right
in the beginning. Because I represents the value of i at the start of the program, it
is unnecessary to include this information here.

For this reason the algorithm prefers candidates that do not contain initial-state
metavariables to those who do contain them. This is in particular reasonable for
loop-dominated programs. The more statements precede the loop, the more might
the requirements for the initial state differ from the requirement for states which
are reached in the loop. In these cases it makes sense not to reject initial-state
metavariables in the invariants. Unfortunately, we could not find an example where
it is actually necessary, because the programs of our sample database were mostly
loop-dominant8. Besides that we suspect that there are cases where such an invariant
fragment is not actually necessary but helps the theorem prover to create a shorter
proof.

We implemented this scoring method although it is only useful for the partic-
ular group of loop-dominant programs, because most of our programs were loop-
dominant. In addition, we assume, that the extraction of the loop from a program
is a reasonable preprocessing step to yield better performance (see Section 7.7).
These extracted loops then form loop-dominant programs.

Example 5.12 (Initial-state and Invariant Metavariables). There are several ways
to implement the preceding two scoring methods. Assume that we have implemen-
tations which simply output the score 1.0 if the invariant candidates contains the
respective type of metavariable and 0.0 if not. Have a look at the following invariants

inv 0 � true ^ i ¡ 5^ k 2
inv 1 � true ^ i ¡ 5^ I 2

inv 2 � true ^ i ¡ 5^M ¡ 42
inv 3 � true ^ i ¡ 5^ I 23^M ¡ 0

8Or they were nearly loop-dominant, which means there were only few (trivial) program state-
ments before the loop.

5.2. INNER WORKINGS OF THE INVARIANT GENERATOR 95

where I is the initial-state metavariable which was introduced for the existentially
quantified variable i and M is a newly introduced invariant metavariable. Let
sartpinvq be the score calculated by scoring method no 2 and snatpinvq the one for
scoring method no 3. The invariant candidates yield the following scores:

sartpinv 0q � sartpinv 1q � 0.0
sartpinv 2q � sartpinv 3q � 1.0
snatpinv 0q � snatpinv 2q � 0.0
snatpinv 1q � snatpinv 3q � 1.0

The algorithm calculates the total score by adding up all single scores. The single
scores can be weighted. Assuming that the two scores in this example are equally
weighted, we yield the overall scores (calculated as average with equal weights of
both scoring methods).

spinv 0q � 0.0
spinv 1q � spinv 2q � 0.5

spinv 3q � 1.0

4. Multiple Occurrence of Formulae In an open proof, sometimes the same
formulae occurs in several open goals. It is reasonable to prefer invariant candidates
made from those formulae to others, because if the candidate makes the algorithm
close branches, it will close several branches at the same time and not only one.

5. Reoccurring Formulae Formulae which occurred in open proofs in several
iterations of the algorithm might be reasonable candidates for the next invariant,
because they hint to situations where the non-termination proof repeatedly failed.
Thus, we introduce by that a kind of history criterion, which prefers invariant can-
didates made from formulae that occurred often in open proofs to those which only
occurred rarely.

6. Proof Size For this work, we define the size of an open proof and the size of
an open goal as follows.

Definition 5.13 (Goal Size and Proof Size). An open goal g has the form Γ ñ ∆
where Γ is the set of formulae of the antecedent and ∆ is the set of formulae of the
succedent. The size of an open goal is defined as

|g| � |Γ| � |∆|.

The size of a closed goal is 0. The size of a an open proof p is the number n of open
goals gi for i � 0, . . . , n. The size of a closed proof is 0.

We presume that the smaller an open proof is the closer it is to being closed.
Therefore, it is a reasonable assumption that formulae which come from small open
proofs are to be preferred to those that come from large open proofs. Thus we prefer
invariant candidates from proofs that where nearly closed to those that come from
proofs with lots of open goals.

96 CHAPTER 5. ALGORITHM

5.3 Soundness and Completeness

In this section, we examine soundness and completeness as properties of algorithms.
Soundness in this case means that, whenever the algorithm’s result is “The input
program does not terminate”, then the input program actually does not terminate.
The presented algorithm is sound if the underlying theorem prover is. The algo-
rithm only outputs “The input program does not terminate” if the theorem prover
could prove the non-termination with one of the invariants which was created in the
algorithm. If a false positive9 would occur, it would be due to the unsoundness of
the theorem prover.

Completeness means that every non-terminating program could be identified by
our algorithm. Our algorithm is of course not complete. Anyway, it would be
surprising, because otherwise we would have solved the halting problem.

In conclusion we can say about the algorithm, that if the input program does
not terminate, our algorithm either outputs “This program does not terminate.” or
“I do not know if this program does not terminate”. If the input program actually
terminates for all possible inputs, the algorithm outputs always “I do not know if
this program does not terminate.”

5.4 The Algorithm for Nested Loops

In principle, this algorithm can be applied to nested loops, too. There are basically
two ways to deal with nested loops when using our algorithm: transformation into
an unnested loop or examining each (inner) loop separately. We will describe both
ways in this section.

5.4.1 Transformation into Unnested Loops

Every nested loop can be transformed into an unnested loop. This transformation
is done by introducing an extra variable which indicates if the current loop iteration
is one of the former inner loop or of the former outer loop. Figure 5.10 shows the
transformation of a nested loop with one inner loop and one outer loop into a single
unnested loop. By successive application of this transformation, nested loops can be
transformed into one single unnested one. This transformation becomes more diffi-
cult if the nested loops are in conditional branches, but we assume that in principle
a similar transformation is possible for arbitrary programs. For the examples which
we examined, the transformation as shown in Figure 5.10 was sufficient.

5.4.2 Examination of Inner Loops Separately

This algorithm is not restricted to a fixed number of loops nested in each other, but
for simplicity reasons, we only show examples containing only two loops, where one

9A false positive is a program that is announced to be non-terminating, but which is actually
terminating for all possible input values.

5.4. THE ALGORITHM FOR NESTED LOOPS 97

boolean inner = false;

while (a || inner) {

if (!inner) {

p_a;

inner = b;

}

if (inner) {

p_b;

inner = b;

}

if (!inner) {

p_c;

}

}

while (a) {

p_a;

while (b) {

p_b;

}

p_c;

}

Figure 5.10: Transformation of a Nested Loop into a Single Unnested Loop
The left program shows the transformation of the nested loop in the right program. The
statements p a;, p b; and p c; stand for arbitrary (but not loop-containing) code frag-
ments. The transformation is done by introduction of the additional variable inner.

is an inner loop of the other.
A program which has n loops l1, . . . , ln, where ln is the inner most loop and l1 the

outer most loop, has n different possibilities to not terminate, namely each single
loop. Of course several of these loops can be non-terminating, but it is sufficient to
find one of them.

Consider the example program which we show in Figure 5.11. The cause for
non-termination here is the inner loop while (j > 5), which does not terminate
for j ¡ 5. If there was not the inner loop, the outer loop would terminate.

In contrast, example NestedOuter is a program with a nested loop where the
outer loop causes the non-termination while the inner loop always terminates.

In this approach we prove the non-termination of nested loops by examining
each loop separately. Approaching a nested loop, it makes sense to first check the
non-termination of the inner most loop, because it is less complex than to deal with
the outer loops, and then go on to the more outer loops. The way to deal with
each loop is the same, so we describe the approach for some arbitrary loop li for
i P t1, . . . , nu where n is the number of loops in the program. The analysis is done
in these steps.

1. Extract the code of loop li including its inner loops from the program.

2. Form a formula stating the non-termination of this code fragment without quan-
tifiers. This means a formula of the form rpsfalse where no quantifiers precede
the modality and p is the extracted code fragment.

3. Precede the formula with an update vj :� aj for all variables vj P Vp which

98 CHAPTER 5. ALGORITHM

increase(int i) {

int j;

while (i < 10) {

j = i;

while (j > 5) {

j++;

}

i++;

}

}

Figure 5.11: WhileNestedOffset
This program contains a nested loop. The inner
loop does not terminate if j ¡ 5. The outer
loop does not terminate because it will always
eventually set j to a value greater than 5 and
thus cause the inner loop to not terminate.

nestedOuter(int j) {

while (j > 0) {

int i = 0;

while (i < 2) {

j += i;

i++;

}

}

}

Figure 5.12: NestedOuter
This program contains a nested loop. The outer
loop does not terminate for all values for j which
are greater than 0. The inner loop always ter-
minates.

• are assigned a value aj before the outmost loop of the program and

• are not changed in any of the loops.

4. Precede the formula with an update wk :� Wk for all variables in wk P Vp which
do not fulfill the requirements in the preceding point. Wk is a fresh initial-state
metavariable for each variable wk.

5. The formula looks then like

ñ tv1 :� a1 || . . . || vp :� ap || w1 :� W1 || . . . || wq :� Wqurwhile . . . sfalse

6. Then we apply the algorithm as described in Section 5.1 chapter with this formula
as initial formula.

7. In the branch of the proof which represents the preservation of the invariant in
the execution of the loop body, inner loops lj of li with j i will occur in the box
modality. In this case a partial correctness proof of the inner loop is necessary
in order to perform the iteration of the algorithm.

8. If the algorithm can prove the non-termination of the loop, it will output the
invariant and constraints which describe the requirements for the variables which
were assigned metavariables. By introduction of those variables we proved that

5.4. THE ALGORITHM FOR NESTED LOOPS 99

the loop li does not terminate for some program states as starting state. The
problem is that we cannot ensure that these states are actually reached in one
of the executions of li’s outer loops. Therefore we additionally have to prove the
reachability of these states in a separate proof.

This method to deal with nested loops has some weaknesses compared to the
approach of translating the nested loops into a single unnested one. The weaknesses
are the necessity of a partial correctness proof of the inner loops and the necessity
of the additional reachability proof.

The advantage of this approach is that we can identify directly which of the loops
causes the non-termination where the approach of transformation into a single loop
does only output the critical inputs without an explanation which loop causes the
problem. This feature is in particular useful in case this analysis is integrated into
a development environment. In this case the tool could tell the developer directly
which loop he has to debug.

Concerning the complexity, this approach has the advantage that the algorithm
can stop as soon as it has proven the non-termination and reachability of one inner
loop. The more inside the critical loop is the shorter the runtime of the algorithm
is. The approach of translation into a single loop on the other hand examines in its
proof always all loops at the same time, because it investigates the single unnested
loop only.

In the KeY prover, which we use for our implementation, there is so far no proce-
dure to generate partial correctness proofs of loops fully automatically. Therefore we
could not solve the examples with nested loops automatically using this approach,
because we only use the functionality of KeY which can be applied without human
interaction. We did though apply the first approach of transformation into a single
loop and will present the results in Chapter 7.

100 CHAPTER 5. ALGORITHM

Chapter 6

Implementation of the Algorithm

We implemented the algorithm which we presented in the preceding chapter and
ran a number of experiments on a database of non-terminating programs. In this
chapter, we inform about the details of the implementation, the technology which we
used, the challenges we faced during the development and how we managed them,
how the different components work together and how the software is used by a user.

Note, that this implementation is highly experimental and shall be considered
more as a proof of concept rather than as designed for actual deployment. For as
far as we know, this is the first implementation of an automatic tool for detection
of infinite loops.

6.1 Used Technology and Technical Requirements

We implemented the algorithm which we described in Chapter 5, except for the
theorem prover. We used an existing theorem prover as back end, namely the
KeY prover which we presented in Chapter 3.5. The KeY prover uses an external
implementation of Cooper’s algorithm as constraint solver to handle metavariables
as described in Chapter 3.4.

Our implementation of the algorithm is written in Java 5. We used ant scripts
and the standard Javac compiler, version 1.5.0 06, for compilation. The software
runs on every machine which provides an adequate Java virtual machine, and fulfills
the requirements of the KeY prover. In addition, the program xvfb-run must be
installed, which is a requirement to ensure the correct communication between the
invariant generator and the KeY prover. We will talk about the communication in
more detail in Section 6.4.

The version of KeY which we used in the development and experimental phase
was taken from the CounterExamples branch version 67 to 76.

6.2 Design

We designed the software to make it as flexible as possible for experimenting with
different components in the four phases (Section 5.2) of the algorithm. Figure 6.1

101

102 CHAPTER 6. IMPLEMENTATION OF THE ALGORITHM

Figure 6.1: Components of the Software
This is a sketch of the components of our software. The invariant generator has four main
components, invariant creator, invariant filter, invariant judge and the queue. Besides that
there are components for the data structure and the communication with the user and
the KeY prover. The KeY prover is an external component and contains the constraint
solver as subcomponent.

shows a sketch of the design of the software.

Each phase of the algorithm has a set of modules, namely creation modules,
filter modules, score modules and for the fourth phase, different implementations
of queues. There is always an abstract class for each phase, of which the concrete
implementations of the modules inherit. We will briefly introduce all modules here
and describe their purpose. Note, that the modules not exactly match the described
components in Chapter 5, because we gave ourself the freedom of experimenting
with different approaches while designing a solid algorithm.

6.2.1 Creation of Invariant Candidates

All classes of the software which are responsible for the invariant creation inherit
from the abstract class CreationModule and provide a method which takes a set of
sequent formulae as input and outputs a set of invariant fragments. Most of them
are implemented according to their description in 5.2.1.

6.2. DESIGN 103

• IdModule This module implements the creation method no 1, the adding of
formulae of the succedent of an open goal.

• NegationModule This module works according to the description of creation
method no 2, which is the adding of the negation of a formula of the succedent
of an open goal.

• GreaterModule This module is the implementation of the creation method no 3,
where equalities from the antecedent of an open goal are turned into a greater-
than inequality.

• LessModule This module does the same as GreaterModule except that it creates
a less-than inequality.

• GreaterMeta This module examines an equality of the antecedent of an open
goal, takes the term of the left side of it and includes this term into a greater-
than inequality with a fresh metavariable on the right side. This module is
the rudimentary predecessor of the creation method no 3, the introduction of
metavariables, which is described in Section 5.2.1. It has the drawback that
in the theorem prover the terms in equalities are sorted in a fixed but arbitrary
order and if we only consider the left side of an equality we might miss important
terms which occur on the right.

• LessMeta This module does the same as the preceding one, except that it pro-
duces less-than inequalities instead of greater-than ones.

• SmartGreaterMeta This module is the mature version of GreaterMeta. It cre-
ates greater-than inequalities for each occurring term of an open goal. It imple-
ments exactly the creation method no 4.

• SmartLessMeta This module does the same as the preceding one, except that it
creates less-than inequalities.

• OrPair This is the implementation of the creation method no 5, which is adding
pairs of invariant fragments disjunctively.

6.2.2 Filtering of Invariant Candidates

All invariant filters are implemented as separate classes. They inherit from the class
FilterModule and provide the method which takes an invariant candidate as input
and outputs if this candidate is approved or not. The filter methods are described
in the preceding chapter in Section 5.2.2.

• ComplexityDepth This module approves an invariant candidate if its depth
(when considering the formula as a tree) is under a certain limit. This limit
can be specified as a parameter by the user. This is suggested in filter method
no 4.

• ComplexityNumOfNodes This module also examines the complexity of an invari-
ant candidate but in contrast to the preceding module it dismisses a candidate
if its number of operators exceeds a certain limit. This limit is also specified

104 CHAPTER 6. IMPLEMENTATION OF THE ALGORITHM

by the user. The method is described in the preceding chapter as filter method
no 4.

• InitClosed This module checks if the considered invariant candidate comes from
a proof whose initial branch is not closed. This filter addresses the problem of
impossible closure of the init-branch, which is described as filter method no 3 in
Section 5.2.2 and as interpretation of an open goal in Section 4.2.2.

• EquivalentSimple This module provides a simple check if the new invariant
candidate is equivalent to the one of the current iteration. The check is done if
the fragment formula which is added to the old invariant candidate to gain the
new one is already a conjunctive subformula of the old candidate.

• AlreadyDone This module checks if the invariant candidate was already tried in
some iteration.

We suggested a combination of EquivalentSimple and AlreadyDone in the
description of the algorithm in Section 5.2.2 as filter method no 2. An exact im-
plementation of this idea would requires a reasoning step by the theorem prover to
check the equivalences of formulae. Unfortunately, the invocation of the theorem
prover is a very costly step, which we therefore avoided by only implementing these
rudimentary versions of the filters. The same applies for the filter no 1, which checks
if an invariant is equivalent to false. We did not implement it, because it would have
made the invocation of the theorem prover necessary. The performance issues which
cause the high costs of the invocation of theorem prover are discussed in Section 6.6
of this chapter.

6.2.3 Scoring of Invariant Candidates

We implemented various modules to judge the quality of a candidate as non-termi-
nation invariant. All modules inherit from the class JudgeModule and provide the
method which takes an invariant candidate as input and output the score as a real
number between 0.0 and 1.0.

We implemented all scoring methods mentioned in Section 5.2.3 and additionally
a few more. The latter ones have a more experimental character and happened to be
not as useful as expected, which is why we did not include them in the algorithm’s
description in Chapter 5.

• ComplexityNumOfNodes is a module which assigns a score to an invariant candi-
date according to the number of operators in it. The fewer operators an invariant
candidate has, the smaller is the score and thus the more is this candidate pre-
ferred in the queue (scoring method no 1).

• The module ComplexityDepth has the same behavior as the preceding one, ex-
cept that it examines the depth of the invariant candidate rather than the number
of operators. This is also described as scoring method no 1.

• The modules ArtMetaVarNeg and NatMetaVarNeg return a high score if the in-
variant candidate contains an invariant metavariable or initial-state respectively.

6.2. DESIGN 105

Thus, these modules are used to not advance those candidates in the queue. We
described this method as scoring method no 2 and 3.

• The modules ArtMetaVarPos and NatMetaVarPos do the opposite of what their
counterparts in the preceding item do. They assign low scores in case the invari-
ant contains invariant metavariables, respectively initial-state metavariables.

• GoalSize is a module which judges an invariant candidate by the size (measured
in the number of formulae in the antecent and succedent) of the goal where it
comes from. The smaller the goal is the smaller is the score which is assigned by
this module. The usefulness of this module was a guess and so far we could not
show that it actually helps in the decision which invariant to chose next.

• The modules ProofNumOfGoals and ProofNumOfFormulae examine the size of
the proof from which the candidate originates. The smaller the proof is (mea-
sured in number of goals or number of formulae in the goals respectively) the
smaller is the score. We described ProofNumOfGoals as scoring method no 6.

• The module multipleOccurences checks whether the formula from which the
invariant candidate originates occurs multiple times in the open proof. The more
often it occurs the smaller is the score. This is the implementation of scoring
method no 4.

• The modules numArtMetaVarPos, numNatMetaVarPos, numArtMetaVarNeg and
numNatMetaVarNeg work similar to their counterparts without num (see 3rd and
4th item in this list). The difference is that these modules here not only check if
an invariant candidate contains a metavariable but checks how many metavari-
ables occur in the candidate.

• PreviousOccurrence implements the idea of checking how often an invariant
candidate occurred in previous iterations of the proof. The more often the can-
didate occurs, the smaller is the score. We described this method as scoring
method no 5.

• The modules numModVarsNeg and numModVarsPos also have a more experimental
character. They assign high respectively low scores if the invariant contains few
respectively many variables which are changed in the loop body (those are the
ones in the modifier file, see Section 6.3).

• ContainsOr is a model which assigns a high score if the invariant candidate con-
tains a disjunction. This seemed to be a useful idea because invariant candidates
which were created by the creation module OrPairs tend to become quite com-
plex and therefore are assigned a high score to not prefer them too much in the
queue.

6.2.4 Other Components

The component diagram in Figure 6.1 gives an overview over all components of the
software. We will not go into more detail about the actual implementation of any
more classes, because we consider the ones we described above as the essential ones.

106 CHAPTER 6. IMPLEMENTATION OF THE ALGORITHM

The just described modules are held in an invariant creator class, an invariant
filter class and an invariant judge class respectively. There are different classes
which implement invariant queues. The one that we used in the experiments was a
priority queue which used the assigned scores to queue the invariant, but in principle
one could use a normal FIFO or LIFO-queue as well (they would make the scoring
obsolete then).

In addition, the software contains classes which capture the data structures of
formulae, goals and proofs. There are several classes who handle the communication
between our software and the theorem prover, for instance creating invariant files or
parsing proof files. Another class deals with the communication with the user and
one class glues the all parts together and contains the core algorithm, which was
sketched in Figure 5.2.

6.3 Preparations of the Input Programs

Fortunately, the application of our algorithm requires no preparation of the input
program’s code. The program is given to the software as a Java file containing a
public and static method which contains the program in question. There are only
two files, which the user has to create in addition to the source code file.

The first file is a file written in KeY syntax, which contains the formula, which
states the non-termination of the input program. In a full integration of this software
in a development tool, this file could be created automatically.

The second file is necessary for the application of the algorithm, because we need
to apply the modified invariant rule invRuleMod (Figure 3.10). It contains the list
of variables, which are actually manipulated in the while loop1. The information
is necessary to derive the reduced context for the invariant rule. See Section 3.3.2
for the presentation of the rule. We have to use rule invRuleMod here instead of
the unmodified version of the rule because we work with incremental closure of
constraints. See Section 3.4 for details. We call this file modifier file. The creation
of this file could be done automatically because all information which are necessary
for it can be retrieved from the program’s code by static analysis.

6.4 Interaction with the Theorem Prover

In this setup the invariant generator is the front end of the software and the KeY
prover is the back end of it. As we described in Section 5.1, the invariant generator
communicates with the underlying theorem prover in several steps of the algorithm.
The invariant generator hands over a formula in the 2nd step and invariant candi-
dates in the 4th step of the algorithm. The theorem prover has to communicate the
result of the proof (attempt) to the invariant generator after step 6 of the algorithm.

In our implementation, the communication is done via files. In every iteration of
the algorithm, the invariant generator is invoked with these files as input: the KeY

1Those variables are complementary to the variables, which might be read in the loop, but
never get assigned a new value except outside the loop.

6.5. USER INTERACTION 107

file and an invariant file, which contains the invariant candidate which the prover is
supposed to use in the application of the invariant rule and the information of the
modifier file.

After KeY has constructed a (possibly failed) proof, it dumps a proof outline into
a file. The proof outline contains the nodes of the proof where the proof branches
and the leafs including the formulae of the open goals.

The usage of files is of course not the most performant way to implement the
communication. So far, KeY does not provide any other way of interaction with
external software. KeY was originally designed as an interactive theorem prover.
This means that it has a user interface, which was so far the only way to insert
an invariant for the invariant rule. To enable KeY to read invariants from files,
modifications to the KeY systems had to be made2.

The fact, that KeY was designed as interactive prover means that it comes with
a graphical user interface. To our knowledge, the interface cannot be deactivated
so far. Because the invariant generator invokes KeY on the operating system level
and does not support a graphical interface, we had to capture the graphical output
of KeY. We used a virtual frame buffer xvfb-run, which runs KeY but absorbs
its output. This is a sufficient solution for this problem because KeY actually has
an automatic mode, which means that it can be invoked with a proof obligation,
constructs the proof and dumps the result. The graphical output is the only thing
necessary to be taken care of.

6.5 User Interaction

The algorithm detects the non-termination of a program fully automatically (or
not at all). Thus, the only user interaction that is necessary is the startup of
the software. The software is invoked on the command line with the file name as
only mandatory option (for everything else, reasonable defaults are provided). In
addition, the software provides a number of options which the user can choose from,
for instance the maximum number of iterations and which of modules for creation,
filtering and scoring shall be used. Furthermore, options for particular modules can
be specified as well.

6.6 Issues during the Development

During the implementation and experimental phase we encountered several prob-
lems. Some are due to the technical environment, some are inherent problems origi-
nating from the theoretical background. We describe the most severe technical ones
here and discuss the others in the evaluation of our experiments in Chapter 7.

2We thank Philipp Rümmer for the implementation of this and some other features of KeY
which were necessary for the implementation of our software.

108 CHAPTER 6. IMPLEMENTATION OF THE ALGORITHM

Long Startup Time of KeY Following the description of the algorithm, our
implementation invokes the theorem prover in each iteration. With each new invo-
cation the theorem prover has to build up its logic and read in all necessary rules
and heuristics. This is a significant amount of data to be processed before the ac-
tual proof can be constructed. Unfortunately, the startup time of the KeY prover
is about 30 seconds3. This increases the overall time which the software consumes
dramatically.

This problem would not occur, if the theorem prover had some kind of server
mode. In such a scenario, the prover could be started once in the beginning and
then be used by the front end to receive and process proof requests. In this mode at
the startup, the prover loads all its rules, heuristics and builds up the logic suitable
for the program. It does all these action only once in the beginning. Then the
front end software could send a proof request in each iteration of the algorithm.
The theorem prover in server mode could process the request and return the result
without loading the rules and heuristics over and over again. This would save the
long startup time in each iteration.

Unfortunately, KeY does not get such a mode, because it is not designed for an
application like ours. Because our implementation is basically a proof of concept,
we came to an arrangement with it and used it in this suboptimal way.

In the algorithm, the theorem prover can not only be used to construct the non-
termination proofs, but also to make the checks which are necessary for the filter
no 1 to 3 (Section 5.2.2). Because we already loose so much time in each iteration
of the algorithm, we did not use KeY for those checks, but implemented rather
rudimentary versions of it (Section 6.2.2).

Because of this performance issue, the runtime of our software is extremely long.
We therefore had to limit the number of iterations to 50 to get reasonably many
results with the resources which we were provided. An average run of the algorithm
which really performs the 50 iterations takes about 60 minutes, of which about half
an hour is consumed by KeY’s startup time.

3Measured on the Pentium M machine with 1.50GHz and 1 GB RAM.

Chapter 7

Experiments

We applied our software, which we presented in Chapter 6, on a set of example
programs. We ran several experiments with different heuristics and will discuss the
results in this chapter.

7.1 Sample Database

As part of this work, we looked for non-terminating programs to test the perfor-
mance of our software. This search for example programs turned out to be harder
than expected, because there are nearly no sources for non-terminating programs.
Obviously, people do not publish non-terminating software. If they do, they do not
annotate it with this information, because probably they do not know about the
non-termination yet.

For term-rewriting systems, there is an annual competition1, in which different
research groups compete with their automatic termination analysis tools. Over the
years a database full of terminating and non-terminating term-rewriting systems
was built up. Because there is no such competition for imperative programs (even
not a competition with the goal of proving only the termination of programs), there
is no public standard database available for non-terminating imperative programs
which we could have used for our work.

To our knowledge, we wrote the first tool which automatically analyzes imper-
ative programs for non-termination. All other projects which examine imperative
programs exclusively look for the termination of them. See the introductory Chapter
1 for information about these projects. Therefore we had to build our own sample
database of non-terminating programs as a starting point.

We collected 55 example programs from various sources. Among these sources
were literature about programming, websites about common programming errors,
bugtracker of open source software projects and personal communication. Unfortu-
nately none of these sources was very fertile, which lead to the situation that we
had to program most of the examples by ourself. We created the examples from our

1http://www.lri.fr/�marche/termination-competition/

109

110 CHAPTER 7. EXPERIMENTS

own experience in software development and let us inspire by the non-terminating
examples of term-rewriting systems of their termination competition.

We refer to our set of programs as While DB and publish it on our website2.
Among the 55 examples there is one which is actually terminating (WhileDecr)
and one where it is still unknown if there are inputs for which it does not terminate
(Collatz). We proved the non-termination of all examples manually using KeY,
except for WhileDecr and Collatz. In these proofs we used the most general
invariant which we could derive from the program code using our intuition and
experience.

7.2 Setup for the Experiments

We ran a number of experiments with different heuristics and settings. As men-
tioned in Chapter 6, the KeY version which we used, was taken from the Counter
Examples branch. We used version 67 to 76 of this branch.

For the experiments we used two GNU/Linux machines. One was a Ubuntu
with kernel 2.6.17 on a Pentium M machine with 1.50GHz and 1 GB RAM and the
other one was a Gentoo with kernel 2.6.14 on a Pentium 4 Single Core machine with
2.60GHz per CPU and 1.5 GB RAM. Most experiments were carried out on the
latter machine. The used Java virtual machine was of version 1.5.0 04.

Originally, we planned to run a larger number of experiments using a cluster of
computers. Due to certain technical issues this was not possible. See Section 7.5 for
further explanation.

7.3 Overview over the Results

In this section, we will give an overview over the results of our experiments. We will
compare experiments with different settings and different examples. Sections 7.4
and 7.6 then examine a selection of particular examples and discuss their results.

Number of solved Examples We are happy to announce that the results of our
experiments are very good. Of the experiments which were carried out, 7 runs could
be completed, which is a total number of 385 calls. Our software could find the non-
termination of 41 of the 55 of the examples in total (75%), and at most 37 (67%) in
one run. The tables in Figures 7.1 and 7.2 show which experiment could solve which
example. Of the 385 experiments, 242 were successful, 14 terminated because the
algorithm ran out of invariant candidates and 129 reached the maximum number of
iterations.

Number of necessary Iterations In our experiments we set the upper limit
for the number of iterations to 50. The reason are performance issues which we
discussed in Section 6.6 and will analyze further in Section 7.5. We calculated the

2http://academia.helgavelroyen.de/

7.3. OVERVIEW OVER THE RESULTS 111

Run Name M
al

m
oe

F
le

ns
bu

rg

E
up

en

H
el

si
nk

i

St
oc

kh
ol

m

K
ir
un

a

Pa
ri
s

Total
AlternatingIncr 3 2 3 2 3 12 3 2 3 4 3 4 3 2 3

AlternDiv 3 4 3 6 7 - 3 4 3 4 3 6 3 4 3

AlternDivWide 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

AlternDivWidening 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

AlternKonv 3 24 7 - 3 29 3 28 3 8 3 18 3 40 3

Collatz 7 19 7 19 7 - 7 - 7 - 7 - 7 - 7

ComplInterv 7 4 7 4 3 31 7 9 3 15 3 15 3 17 3

ComplInterv2 7 - 3 4 3 2 7 - 3 2 3 4 3 11 3

ComplInterv3 3 6 3 4 3 2 3 5 3 2 3 4 3 5 3

ComplxStruc 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

ConvLower 3 25 3 6 3 3 7 - 3 5 3 3 3 4 3

Cousot 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

DoubleNeg 7 2 7 3 7 - 7 - 7 - 7 - 7 - 7

Even 3 5 3 5 3 2 3 5 3 2 3 5 3 5 3

Ex01 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

Ex02 3 25 3 6 3 3 7 - 3 3 3 3 3 4 3

Ex03 3 3 3 5 3 2 7 - 3 2 3 2 3 3 3

Ex04 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Ex05 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Ex06 3 4 3 4 3 4 3 4 3 4 3 4 3 6 3

Ex07 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Ex08 3 2 3 2 3 3 3 2 3 3 3 3 3 2 3

Ex09Half 7 9 7 9 7 - 7 50 7 - 7 - 7 - 7

Factorial 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

Fib 3 21 3 18 3 40 3 6 3 39 7 - 3 8 3

Flip 3 24 3 17 3 6 3 11 3 7 3 11 3 11 3

Flip2 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

Gauss 3 3 3 3 3 2 3 3 3 2 3 3 3 3 3

Gcd 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

Lcm 3 2 3 2 3 8 3 2 3 6 3 2 3 2 3

Marbie1 3 2 3 2 3 3 3 2 3 3 3 3 3 2 3

Marbie2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Middle 3 2 3 2 3 31 3 2 3 13 3 2 3 2 3

Figure 7.1: Results of all Runs on the Examples - Part 1/2
This table shows which run could solve which example. The symbol 3 indicates that the
example was solved and the number which follows is the number of iterations which was
necessary. The symbol 7 indicates that the algorithm could not solve the example. If it is
followed by a number, it failed because it ran out of invariant candidates. If it is followed
by “-”, then it reached the maximum number of iteration, which was in all runs set to 50.

112 CHAPTER 7. EXPERIMENTS

Run Name M
al

m
oe

F
le

ns
bu

rg

E
up

en

H
el

si
nk

i

St
oc

kh
ol

m

K
ir
un

a

Pa
ri
s

Total
MirrorInterv 7 - 7 - 7 - 7 - 7 - 3 2 7 - 7

MirrorIntervSim 3 5 3 11 3 5 3 9 3 5 3 8 3 9 3

ModuloLower 3 6 3 20 7 - 3 7 7 - 7 - 3 17 3

ModuloUp 7 9 7 9 7 - 7 - 7 - 7 - 7 - 3*
Narrowing 3 13 7 - 7 - 3 21 7 - 7 - 7 - 3

NarrowKonv 3 7 3 9 7 - 3 7 7 - 7 - 7 - 3

Plait 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

Sunset 7 - 3 48 3 5 7 - 3 5 3 5 3 8 3

TrueDiv 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

TwoFloatInterv 7 - 7 - 3 4 7 - 3 4 3 4 3 14 3

UpAndDown 3 4 3 4 3 4 3 4 3 4 3 4 3 6 3

UpAndDownIneq 3 4 3 4 3 4 3 4 3 4 3 4 3 7 3

WhileBreak 3 2 3 2 3 3 3 2 3 3 3 2 7 2 3

WhileDecr 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

WhileIncr 3 2 3 2 3 3 3 2 3 3 3 3 3 2 3

WhileIncrPart 3 12 3 6 3 3 3 19 3 3 3 3 3 4 3

WhileNested 7 - 7 - 7 - 7 - 7 - 7 - 7 - 3**
WhileNestedOffset 7 - 7 - 7 - 7 - 7 - 7 - 7 - 3**
WhilePart 3 25 3 6 3 3 7 - 3 3 3 3 3 4 3

WhileSingle 7 - 3 5 3 2 7 - 3 2 3 2 3 3 3

WhileSum 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7

WhileTrue 3 1 3 1 3 1 3 1 3 1 3 1 3 1 7

Number of 3 30 35 35 34 36 35 36 41
Number of 7 - 23 15 20 16 19 19 18 -
Number of 7 n 2 5 0 5 0 1 1 -

Figure 7.2: Results of all Runs on the Examples - Part 2/2
See caption of preceding Figure 7.1.
*: The example ModuloUp could be solved in another run, which was done with a KeY

version which had an improved modulo handling. This very run was performed on this
example exclusively and could solve it in 2 iterations.
**: The examples WhileNested and WhileNestedOffset were solved after transfor-
mation into an unnested loop, see Section 5.4.

7.3. OVERVIEW OVER THE RESULTS 113

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Number of iterations

Number of solved problems over the iterations

Helsinki
Flensburg

Malmoe
Kiruna

Stockholm
Eupen

Paris

Figure 7.3: Performance of Different Runs as Graph.
This graph shows the performance of the different runs over the number of iterations. The
x-axis describes the number of iterations and the y-axis shows the number of examples
that were solved.

average number of iterations until the software terminated in each run to compare
the performance of different runs. The number lies between 10.08 and 15.16 it-
erations, which includes the experiments which reached the maximum number of
iterations. Considering only the successful experiments, an average number of it-
erations between 1.95 and 3.55 was the result. The diagram in Figure 7.3 shows
after how many iterations how many problems were solved comparing the different
runs. In this diagram we can see that most of the examples that were solved, were
actually solved in the first 10 iterations.

Heuristics In the different runs of the experiments, we varied the heuristics, in
particular which creation methods and scoring methods were used. Figure 7.5 shows
which run used which creation method and Figure 7.6 shows which scoring methods
were used and how they were weighted. All these runs were performed with a max-
imum number of iterations of 50, a maximum number of operators of the invariant
candidates of 50 and the maximum depth of candidates was set to 15. All runs used

114 CHAPTER 7. EXPERIMENTS

these filter methods: alreadyDone, complexityDepth, complexityNumOfNodes,
equivalentSimple and initClosed.

Of course the number of experiments is way too small to make an conclusive
judgement of the performance of particular heuristics, but we draw some cautious
conclusions in the following paragraphs. Figure 7.4 shows how many examples
were solved by which runs and how their performance was measured in the average
number of iterations and successful iterations. Because of the small number of runs,
we could unfortunately not adjust the parameters first to get a canonical setting
and then vary the setting to test different heuristics correctly. However, it is still
possible to draw some conclusions.

The runs Malmoe, Stockholm and Kiruna were made to investigate the
helpfulness of module method no 4, introduction of metavariables. Malmoe ran
only with creation methods that do not use metavariables, Stockholm used only
metavariables and the modules IdModule and NegationModule and Kiruna used
all creation methods which the other two used. We chose the parameters for the
scoring by common sense.

The result of this test was, that Malmoe could solve 30 examples, whereas
Stockholm solved 36 ones. This improvement shows that the use of metavariables
is really necessary for a significant number of examples. Kiruna then solved nearly
as much examples as Stockholm did. Only one example which Stockholm could
solve could not be solved by Kiruna. The problem here was that with more creation
methods more invariant candidates are created and in some cases the maximum
number of iterations was reached before the appropriate invariant candidate was
tested. Interestingly, in Stockholm the average number of iterations until success
(2.47) is significantly higher than that of Malmoe (1.67), whereas Kiruna lies
right between those two (1.95). It seems to be that using metavariables is necessary
for solving some of the examples, but in general it is reasonable to first try the
invariant candidates without metavariables.

Examining the runs Kiruna and Paris, we can compare the usefulness of the
creation method no 5, the creation of disjunctions. The total number of solved
examples of Paris is slightly higher (+1) than the one of Kiruna. Unfortunately,
the example AlternDivWidening, which we suspected to be solved by this run
was not solved. Therefore, we can actually not attest that the creation method of
adding disjunctions is useful. The only thing we can deduce from the comparison of
the two runs is that the creation of disjunctive invariant candidates raises the average
number of iterations in successful runs (in our case from 1.95 to 3.09). This is a
consequence of the fact that the more creation methods we use the more invariant
candidates are created and have to be tested until a correct one is found.

Settings of KeY The performance of our software is highly dependent on the
performance of the underlying KeY prover. The different runs do not only vary in
the different heuristics, we sometimes used different KeY versions, too. This is due
to that in some runs problems occurred which could only be fixed by making changes
to KeY. We are aware of the fact that this leads to a more vague comparability, but
because of performance issues we did not have the resources to rerun the experiments

7.3. OVERVIEW OVER THE RESULTS 115

Run Name Successful Max. Iter. Out of Inv. Avg. num. Avg. num.
abs. % abs. % abs. % of iterations sucsfl. only

Helsinki 34 61.82 16 29.09 5 9.09 11.44 3.02
Flensburg 35 63.64 15 27.27 5 9.09 10.35 1.93
Eupen 35 63.64 20 36.36 0 0.00 14.11 3.55
Malmoe 30 54.55 23 41.82 2 3.64 15.16 1.67
Stockholm 36 65.45 19 34.55 0 0.00 12.11 2.47
Kiruna 35 63.64 19 34.55 1 1.82 11.62 1.95
Paris 36 65.45 18 32.73 1 1.82 10.08 3.09
Total / Average 242 62.86 129 33.51 14 3.64 12.12 2.53

Figure 7.4: Performance of Different Runs expressed in Characteristics
The first two columns show how many of the 55 example could be solved (absolute number
and percentage). The second two columns say the same for the examples where the
maximum number of iterations was reached. The next two columns state the number and
percentage of examples where the invariant generator ran out of invariant candidates. The
last but one column shows the average number of iterations over all 55 examples. The very
last column states the average number of iterations, if we leave out the examples where
the maximum number of iterations was reached. The last row of the columns shows the
sum of the absolute values and the averages of the percentages and averages.

Creation Method M
al

m
oe

F
le

ns
bu

rg

E
up

en

H
el

si
nk

i

St
oc

kh
ol

m

K
ir
un

a

Pa
ri
s

Id 3 3 3 3 3 3 3

Negation 3 3 3 3 3 3 3

Greater 3 3 3 3 7 3 3

Less 3 3 3 3 7 3 3

LessMeta 7 3 7 3 7 7 7

GreaterMeta 7 3 7 3 7 7 7

SmartLessMeta 7 7 3 7 3 3 3

SmartGreaterMeta 7 7 3 7 3 3 3

OrPairs 7 7 7 3 7 7 3

Figure 7.5: Applied Creation Methods
This table shows which run applied which invariant creation method.
For a description of the medhods see Sections 5.2.1 and 6.2.1.

116 CHAPTER 7. EXPERIMENTS

Scoring Method M
al

m
oe

F
le

ns
bu

rg

E
up

en

H
el

si
nk

i

St
oc

kh
ol

m

K
ir
un

a

Pa
ri
s

ComplexityNumOfNodes 0.40 0.42 0.40 0.08 0.40 0.40 0.37
ComplexityDepth 0.40 0.33 0.40 0.08 0.40 0.40 0.37
ArtMetaVarNeg - - - - - - 0.07
NatMetaVarNeg 0.08 - - - 0.08 0.08 0.07
ArtMetaVarPos - - 0.04 0.08 - - -
NatMetaVarPos - - 0.04 0.08 - - -
goalSize - - - 0.08 - - -
proofNumOfGoals - - - 0.08 - - -
proofNumOfFormulas - - - 0.08 - - -
multipleOccurrences - 0.13 - 0.08 - - -
numNatMetaVarNeg - - - - - - -
numArtMetaVarNeg - - - - - - -
numNatMetaVarPos - - - 0.08 - - -
numNatMetaVarPos - - - 0.08 - - -
previousOccurrence 0.12 0.13 0.12 0.08 0.12 0.12 0.11
numModVars - - - 0.08 - - -
containsOr - - - 0.08 - - -

Figure 7.6: Applied Scoring Methods and their Weights
This table shows which run applied which scoring creation method and which weight. For
a description of the methods see Sections 5.2.3 and 6.2.3

with different versions of KeY. Because our experiments were intended as a proof-
of-concept rather than as an actual deployment, we did not prioritize the fine tuning
of the heuristics anyway.

7.4 Discussion of Examples with Positive Result

Our software worked well on all examples which contain mostly linear operations.
This is due to that the constraint solver could solve the constraints which come
from those programs, because they were all linear. Example 7.1 is a simple linear
example. Example 7.2 is a more sophisticated one, which was also solved by our
software.

Example 7.1 (Ex02). The example program Ex02 is shown in Figure 7.7. It does
not terminate for all input values i ¥ 5. The only possible invariants are

i ¥ 5 or i � 5

or equivalent formulae. The number of iterations which our algorithm needed for
a successful result lay between 4 and 26. The fastest run with 4 iterations was the

7.4. DISCUSSION OF EXAMPLES WITH POSITIVE RESULT 117

ex02(int i) {

while (i > 0) {

if (i != 5) {

i--;

}

}

}

Figure 7.7: Ex02
This program does not terminate for all input
values greater than or equal 5. If such a value
is given to the program it is decreased to 5 and
then stays stationary.

alternKonv(int i) {

while (i != 0) {

if (i < 0) {

i = i+2;

if (i < 0) {

i = i*(-1);

}

} else {

i = i-2;

if (i > 0) {

i = i*(-1);

}

}

}

}

Figure 7.8: AlternKonv
If this program is started with an odd value of
the variable i, this value oscillates around 0 with
a decreasing amplitude until it reaches -1 or 1.
It then flips between those two and thus does not
terminate. It terminates though for even input
values.

run Kiruna. The found invariant was

true ^ i ¡M

with the constraints
M I ^M � 4^�1 M.

This is equivalent to the more general of the two possible invariants, i ¥ 5. Thus
the invariant and the constraint says that the program does not terminate for all
input values greater than or equal to 5.

Example 7.2 (AlternKonv). Figure 7.8 shows the code of the program Al-
ternKonv. If this program is started with an odd value for the variable i, then
in the following iterations of the loop the value oscillates around zero with decreas-
ing amplitude. When the value reaches �1 or 1, it goes on flipping between those
two and thus never terminates. Figure 7.9 shows the behavior of the program for
some input values. The termination behavior of this program is far from trivial and

118 CHAPTER 7. EXPERIMENTS

-30

-20

-10

 0

 10

 20

 30

 5 10 15 20 25

V
al

ue
 o

f t
he

 v
ar

ia
bl

e
i

Iterations of the loop

Behavior of program AlternKonv started with -31 and 11

starting value i=-31
starting value i=11

Figure 7.9: AlternKonv Value of i over the Iterations.
This plot shows the behavior of the variable i over the iterations of the loop. The two
curves are computed using the starting values i � 11 and i � �31.

the program contains modulo and division operators which are not easy to handle.
Nevertheless, our software could solve it.

There are several possible invariants, but the most general one is

i%2 � 1

saying that i has to be odd. But also the following invariants are reasonable choices.

invA � i%2 � 1^ i ¡M0 with M0 �1
invB � i%2 � 1^ i M1 with M1 ¡ 1
invC � i%2 � 1^ i ¡M2 ^ i ¡ �M2 with M2 ¡ 1
invD � i � �1_ i � 1

Our algorithm could solve this example in 8 to 40 iterations. The best run was
Stockholm, which yielded the invariant

true ^ i M0 ^ i �� 0^ i ¡M1

7.5. ISSUES AND THEIR SOLUTIONS 119

and the constraint

M0 3^M1 �1^M0 4^�4 M1 ^ 1 M0

^� 3 M1 ^M1 I ^ I �� 0^ I M0.

This is equivalent to the more human readable formula

i � �1_ i � 1.

This is not the most general invariant, but an important one, because if the pro-
grammer of this program would get this information and eliminate the problem for
the values �1 and 1, the other critical inputs were not critical anymore and thus
the whole problem would be solved.

7.5 Issues and their solutions

During the execution of the experiments, we encountered a number of issues. We
will enumerate them here, discuss their consequences and how we found a work-
around or solution for them. One issue was the long startup time of KeY, which
we already mentioned in Section 6.6. Other issues were the following.

Instability of the Setup KeY is by now a well-grown and mature software
project, but nevertheless it is still work in progress. Especially the CounterEx-
amples branch, which we used for our experiments, was just recently added to
KeY. The same applies for the integration of the constraint solver. The particular
version of the constraint solver was an experimental choice rather than a fully in-
vestigated decision. The fact that thus all software components are in a beta stage
lead to a number of instabilities in the setup.

The consequences were that a lot of experiments crashed due to these instabili-
ties. Reasons were failure of communication between the parts, unexpectedly high
memory and CPU demands and other problems with the technical environment.
While we tried to address all these problems, unfortunately we could not solve all
of them.

For example, we intended to run the experiments on a whole cluster of comput-
ers, but for some reason, we could not make the software run in a queuing system.
The result were unreproducible errors, crashes and freezings, which we unfortunately
could not identify, because on a single machine without a queuing system, the soft-
ware worked fine. This is the main reason why the total number of successful runs
of experiments is only 7.

Explosion of the Size of Open Proofs One problem was the fact that with
growing invariant candidates the proof size grew dramatically. The consequences
were that sometimes not all branches of the proof were constructed as far as actually
possible, which means that sometimes complicated formulae remained in the open
goals. Because it was not very promising to examine too complicated formulae,
the component of our software which parses the data of the open proof dismisses
formulae which are too complicated.

120 CHAPTER 7. EXPERIMENTS

Explosion of the Number of Constraints A high number of open goals in a
proof yields a high number of constraints for introduced metavariables. The higher
the number of constraints is, the more complicated is the check for solvability of the
constraints. This became a huge problem in later iterations of the algorithm on some
of the examples. Since the problem of solvability of linear unification constraints is
probably not decidable, we were aware of the fact that this issue is inherent of the
problem and not of our implementation. The workaround which we chose was to
limit the amount of time the constraint solver should try to solve the constraints. If
the limit was exceeded, the proof was considered as not closed.

Explosion of the Number of Invariants A high number of open goals leads
to a high number of invariant candidates. Thus, in each iteration, the invariant
queue grows fast. Because every newly created invariant candidate is compared
to all former ones to avoid double calculations, the number of comparisons grows
with the size of the queue. Thus the long queue consumes a lot of memory and CPU
resources. This became a problem in some examples. We decided to limit the number
of elements of the queue to the maximum number of iterations. This influences the
calculations of the scoring module PreviousOccurrence (Section 6.2.3), but so far
was the best solution for this problem.

7.6 Discussion of Difficult Examples

There is a number of examples which could be solved only with a high number of
iterations or not at all. In this section, we will have a look at the reasons for that
and suggest ways to solve the problem.

Complex Control Flow or Many Variables Programs with a complex control
flow structure and/or many variables could sometimes not be solved by our algo-
rithm. The reasons are probably the limited number of iterations and restricted
complexity of the invariant candidates. In a setting with higher resources we could
let the software act more generously and so probably solve the problem. The fol-
lowing examples fall in this group of programs: ComplxStruc, MirrorInterv
and Plait.

Modulo and Division Operations There is a number of programs which make
use of the modulo and division operator (% and {). In some cases, our software
had difficulties to cope with these programs. This is probably due to the fact that
some versions of KeY had a poor modulo handling. The developers of KeY have
improved this by now. We rerun one experiment on the program ModuloUp with
the improved version of KeY and this time the problem could be solved. Another
example of this category is the problem Ex09Half.

Other Nonlinear Problems Some programs have non-linear terms in their as-
signments or boolean expressions. Those programs were sometimes difficult to solve.

7.6. DISCUSSION OF DIFFICULT EXAMPLES 121

factorial(int j) {

int i = 1;

int fac = 1;

while (fac != j) {

fac = fac * i;

i++;

}

return (i-1);

}

Figure 7.10: Factorial
This program is supposed to calculate the num-
ber i for which i! � j holds. Unfortunately,
the program chose the loop condition fac �� j

too defensive. Therefore, if the value of the in-
put variable j is not a factorial of any number,
the program does not terminate.

This is probably due to the fact that the constraint solver cannot solve non-linear
constraints and therefore KeY does not produce any of those, which of course re-
stricts the power of the invariant refinement process. Programs with non-linear
terms are for example: ComplInterv, DoubleNeg and WhileSum.

Programs with Non-convex Invariants There are a some programs, whose
invariant cannot be described by a conjunction of conditions but by a disjunction.
We came up with the invariant creation method no 5, which adds formulae disjunc-
tively to the invariant candidate (see Section 5.2.1). Unfortunately, the experiments
did not show any success for the affected examples so far. We assume that the
problem must be addressed more general than just by adding two disjunct formulae.
Fortunately, all of these programs seemed to be rather artificially constructed prob-
lems than anything that would realistically occur in a developers life. The affected
programs are AlternDivWide and AlternDivWidening.

Nested Loops The algorithm as it is implemented in our software does not sup-
port nested loops. Therefore it is no suprise that the two examples WhileNested
and WhileNestedOffset could not be solved by our software. However, it is
possible to adapt the algorithm to nested loops. We described to ways to perform
this transformation in Section 5.4. We applied the first one, which is the transfor-
mation into a single unnested loop, on the two examples. Our algorithm was able
to prove the non-termination in two iterations each.

Non-trivial Successive Calculations There are a few problems, whose calcu-
lation in one iteration is non-trivially dependent on the results of the preceding
iterations. By non-trivially we mean that it is more complex than just increasing
a variable by one. An example for that is the program Factorial, whose code is
shown in Figure 7.10. In this example the value of fac is calculated by fac �i. This
problem requires an unusually complex invariant, which could not be created by our
software. Other problems of this kind are Fib and Ex09Half.

122 CHAPTER 7. EXPERIMENTS

Unknown problems Although our software did a good job, it still could not find
a solution to the Collatz problem. Sad, but true.

7.7 Suggestions for Improvements

Because this is a proof-of-concept implementation, there are of course several things
that could and need to be improved before this method could actually be used in
a real world environment. From the experience of the experiments, we established
several suggestions to improve the implementation.

Integration of Invariant Generator into Theorem Prover A solution to the
problem of the long startup time of the theorem prover would be the integration of
the invariant generation into the theorem prover, or as suggested in Section 6.6 a
server mode of the theorem prover. A server mode means that the theorem prover
is only started once in the beginning of the algorithm and then processes proof
requests of the invariant generator in each iteration. This improvement would solve
the issue with the highest impact on our software’s performance.

Static Analysis to Retrieve Modifier Set As described in Section 6.3, the user
has to provide a modifier file. The modifier file contains the list of variables which
are manipulated in the the loop body. This information can of course be extracted
from the source code as well. In a real time application this static analysis of the
code should not be a problem and would remove an unnecessary task from the user’s
duties.

Loop Condition as Initial Invariant The third property of an non-termination
invariant (see Section 2.5) is, that the invariant has to imply the loop condition. This
means that at least the information of the loop condition has to be included in the
invariant. It is therefore a reasonable approach not to take true as initial invariant
candidate but the loop condition itself. This could save a number of iterations in
our algorithm. Many of our examples would already be solved by only taking the
loop condition as first invariant candidate, among those is the example which we
introduced in the description of our algorithm in Example 4.1.

We did not include this feature in our software so far, because technically, the
loop condition has first to be evaluated by KeY, then written into the invariant
file and finally read from that file again. There is no feature in KeY so far, which
provides this kind of functionality.

Initial Invariant produced by other Invariant Generation Tools Another
idea to reduce the number of iterations is to use external invariant-generation tools
to generate an initial invariant candidate. This formula would then be for sure an
invariant to start with.

We made tests with an invariant generator which was developed by Weiß in
[Wei07]. The generator uses techniques of abstract interpretation and is also based

7.7. SUGGESTIONS FOR IMPROVEMENTS 123

on KeY. However, the results so were not as good as expected. This is due to the
characteristics of abstract interpretation, which is that the program is examined
under all possible inputs. It is necessary to give the loop condition as precondi-
tion, because otherwise the program flow is too much generalized and the generated
invariant was almost always true.

Because the number of tests was small and we tested only one invariant generator,
we believe that there is still potential in this idea, although the tests have not been
as successful as we thought in the first place.

Additional Information about the Program in Heuristics The search for
the invariant is all about heuristics. The heuristics determine in what way the
invariant candidate search space is traversed. In our implementation, we only used
heuristics who look at the generated invariant candidates and the proof from which
they originate.

It is a reasonable assumption, that it might be possible to equip the heuristics
also with information about the program which can be retrieved by other means.
Results of preceding tests of the program or static analyses of the program code
might give hints for the choice of the invariant candidates. For example a program
which has many variables, but not a very deeply nested control flow might be treated
by different heuristics than programs which have only one variable, but a highly
complicated control flow.

Improvement of Theorem Prover The performance of the invariant generator
is of course highly dependent on the performance of the underlying theorem prover.
This became already obvious when using different versions of KeY in the examples.
None of the seven runs of our experiments was able to solve the example Mod-
uloUp, but when we ran the experiment with a version of KeY, which had an
improved handling of modulo and division operations, the problem was solved in 2
iterations.

This example shows how the quality of the theorem prover influences the quality
of the invariant generation. Of course, all this depends also on the settings of the
theorem prover. There are plenty of heuristics and strategies in a theorem prover,
which itself need careful adjustment to yield the best performance.

Improvement of the Constraint Solver The same as for the theorem prover
applies for the constraint solver (Section 3.4). The better the constraint solver is,
the faster a proof can be closed and thus an invariant is found.

The performance of the constraint solver is highly inversely correlated to the
complexity of the constraints. We discussed this trade-off already in Section 3.4.
The drawbacks of expressive constraints like the linear unification constraints as
used by KeY became obvious in our experiments, because in some iterations the
constraint solver took several minutes to check the constraints and consumed all
CPU power and available memory.

One might even like to be able to solve nonlinear constraints. This is even more
complicated to solve, but was indeed a problem in some of our examples.

124 CHAPTER 7. EXPERIMENTS

Other Ways of Introducing Metavariables So far, metavariables are only
introduced into invariant candidates as the right side of an inequation. One could
think of other ways to introduce them, for example in a modulo operator. The
invariant candidate

i % M � N

would have been a good guess for problems where the invariant describes a set
of periodically distributed critical inputs. The example AlternKonv, which we
described in Example 7.2 could have been solved more generally by this invariant
with M � 2 and N � 1.

Loop Extraction In the initial phase of the algorithm (Section 5.1, steps 1 to 3),
the non-termination proof of the program is constructed until the symbolic execution
reaches the loop. In our implementation, this first part of the proof is done repeat-
edly in every iteration of the algorithm. For the programs in our sample database,
this was never a hard task, because most programs do not have many statements
before the loop statement. In general though, it is a good idea to save this proof
stub after the initial phase of the algorithm and reuse it in every iteration.

It would be even better to extract the loop from the program with as much
information of the context as possible and verify it separately. The advantage here
is that if the construction proof stub needed human interaction, the whole proof
would fail in our setup. If we could do the proof stub separately and if necessary
with human interaction, we could apply our algorithm although there were manual
steps necessary in the stub.

Intermediate Simplification of the Invariants The invariant candidates in
our algorithm are constructed automatically. Automatic generation does not always
find the most compact version of the formula. An idea is to use a theorem prover
or similar application to simplify the candidates before they are put into the queue.
This would make them smaller and thus reduce the complexity of the proofs. An
example is the formula

true ^ i ¡ 3^ i ¡ 5,

which could be simplified to i ¡ 3.

7.8 Summarizing Evaluation of the Experiments

We created a database of non-terminating While programs and applied our al-
gorithm on that. Although the number of examples was rather small, we think
that a lot of common programming errors concerning non-termination are covered
in this data base. We ran a number of experiments on this database to show the
performance of our algorithm.
We stated a number of goals for non-termination analysis in Section 2.4, namely:

1. Identify non-terminating programs.

7.8. SUMMARIZING EVALUATION OF THE EXPERIMENTS 125

2. Identify the critical inputs. Those are the ones for which a program does not
terminate.

3. Describe the set of critical inputs as general as possible.

4. Automate 1.-3. as much as possible.

In summary, we can say that the experiments yield promising results. Our
software could solve 75% percent of the problems automatically, which is a big step
concerning the first goal. For some of the more difficult problems there were some
adjustments in the software and the prover necessary, but then even those could be
solved automatically. We examined the results of the experiments on all programs
in the database and identified possible solutions for the examples which could not
be solved by our software.

The algorithm outputs a set of program inputs which result in an infinite loop;
this meets the second goal. The simpler a non-termination invariant is, the more
general is the description of the set of critical inputs. Because the heuristics for the
search for invariants are designed to preferably look for simple invariant candidates,
our algorithm finds those invariants first. This means our algorithm tends to find
the most general description of the set of critical inputs, which meets the third
goal. The program Ex02 is an example where the algorithm found the most general
invariant and AlternKonv is one where a very specific one was found (Section
7.4).

Concerning the last goal, the full automation, we designed our algorithm to work
without any human interaction. Either it detects the non-termination automatically
or not at all. Therefore the last goal is fulfilled by the algorithm, too.

The experiments were accompanied by technical and mathematical problems,
but in total the approach seems to be a good start. Especially programs which
represented typical programming errors were solved easily by our software. This
gives reason to be optimistic about the usefulness of the approach.

126 CHAPTER 7. EXPERIMENTS

Chapter 8

Non-termination Analysis of Heap
Programs

In this chapter, we will transfer the work which we did on While programs to
another class of programs, namely Heap programs. The Heap language is an
extension of the While language with a richer type system and a heap. We define
a suitable logic and calculus for this language and in Section 8.4 we perform the
non-termination analysis of our algorithm on four example programs of the Heap
language.

8.1 Heap Programs

Heap programs are an extension of While programs (Section 3.1). The essential
difference is that Heap programs can have complex data structures, which are
captured in classes. Additionally, Heap programs can dynamically allocate memory
for their data structures. The memory which is used for this allocations is called
heap memory, which gives the language its name.

The Heap language can be considered as another (and larger) fragment of Java.
It captures the basic concepts of object-orientation in modern programming lan-
guages. The following elements of Java are allowed in Heap programs.

• All elements of the While language, see Section 3.1.

• Arbitrary classes with attributes and methods (but no recursive methods).

• Inheritance of classes.

The inclusion of arbitrary classes and the existence of a heap allows complex
data structures, in particular for instance arrays, linked lists or trees. An example
for a Heap program is shown in Figure 8.1.

127

128 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

public void insertInput(int n, int[] a, int cursor) {

while (a[cursor] != 0) {

cursor++;

cursor = cursor % a.length;

}

a[cursor] = n;

cursor++;

cursor = cursor % a.length;

}

Figure 8.1: ChaosBuffer
The chaosbuffer is an array which stores incoming values at the next
free space counting from the position of the cursor variable. It does
not terminate if there are no free spaces in the array.

8.2 Heap Dynamic Logic

Heap Dynamic Logic is an extension of While Dynamic Logic (Section 3.2). The
essential difference between the two logics is that Heap DL is able to deal with
objects which While DL does not. Before we define syntax and semantics of Heap
DL we explain how the concepts of object-orientation are handled in the logic.

8.2.1 Object-Orientation in Dynamic Logic

The way Heap DL deals with object-orientation is described in the following para-
graphs. We used [BP06] as a guide for the design of the logic. Because we explain the
object handling of dynamic logic already in detail here, we will keep the introduction
of the syntax and the semantics in Sections 8.2.2 and 8.2.3 rather compact.

Classes and Types

Classes in object-oriented programs represent the types of variables. A value of
a variable points to an instantiation of the class, namely an object. Classes are
represented as types in Heap DL. There is an inheritance relation on the set of
classes, which is represented by a subtype relation on the type set in the logic.

Arrays

The datastructure of an array is a particular class which uses the heap. Written
in the syntax as it is shown in Figure 8.1, arrays do not comply to the definition
of Heap programs which we gave in Section 8.1. We assume that arrays can be
modelled in a class Array in a Heap program. This class has the attribute length

and a method for the access of the array’s elements.

8.2. HEAP DYNAMIC LOGIC 129

Object Creation

During the execution of the program, objects are created. In our logic, all entities
have to exist a priori1. This applies also to the objects in a program which are
represented in the logic. To map the situations in a program’s execution into the
logic, we assume that all objects which could ever be created in the program exist
beforehand. Therefore, we introduce an object repository RepC of a class C. The
repository is a countably infinite set of all objects of class C. Each object has
an index i with which we can retrieve the object from the repository, using the
repository access function getC : intÑ C.

There is a counter nextC for each class C which keeps track on how many objects
of class C are already created. Whenever a new object is created in the program
the next “unused” object in the repository is taken and the counter is increased by
one. The creation of a new object o of class C is thus represented in the logic by
the update

o :� getCpnextCq || nextC :� nextC �1.

In conclusion, all objects whose index is smaller than nextC are already created in
the program and all others are not.

The function getC represents a bijective mapping between the natural numbers
and the repository of class C. Thus, two distinct objects of class C do not have
the same index. Repositories of two distinct classes are disjoint; this holds also for
subclasses. Thus, an object of a subclass B of C does not have an index in the
repository of C; it has only one in the repository of B which is distinct from the one
of C.

In object-oriented programs, variables have a static type, which is the one they
are assigned at the declaration of the variable, for example in the program statement
Car o. When initializing the variable with an object o, the type which is assigned
to o by a statement like o = new Porsche() can be any subtype of the static class
of the variable which points to o, in this case Car. This type is called dynamic
type. In the execution of a program, dynamic type checks can be made. In Java
for example they are made with the function instanceOf. We include a predicate
instanceOf also into the logic, but we consider it as abbreviation of the formula

t instanceOf C � Dn
ª

Null τ¤C

t � getτ pnq

for n : int.
Another abbreviation that we want to introduce is the predicate createdC which

stands for the formula

createdCpoq � Dn pgetCpnq � o^ n nextCq

for n : int. The predicate states that the object o of class C is already created,
which means that it is taken from the repository.

1This is only a design decision. There are logics, where the existence of all objects a priori is
not required.

130 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

Given an object o of class C we would like to talk about the index of o in the
repository of C and therefore define the abbreviation indexC : C Ñ int as the
function which returns the index i : int for which holds

getCpiq � o

given an object o of class C. If the object does not exist and thus there is no such
index, the function returns some specific integer, which we do not define here any
further.

Methods and Dynamic Dispatch

Classes (and objects) have methods to manipulate the state of the object. There are
a variety of ways to represent methods in a logic. Because methods are actually not
relevant for our work, we chose a rather simple way to deal with them. We assume
that whenever the symbolic execution of the calculus (Section 8.3) encounters the
invocation of a method, this invocation is replaced by the implementation of the
method.

Because classes can inherit from each other, methods can be overwritten in sub-
classes of others. Therefore the right implementation has to be selected from the
classes whenever it is inserted into a program at the point where it is invoked. This
selection is called dynamic dispatch. It can be reduced to static method calls by
a number of type-checks with instanceOf along the reverse order of the subtype
relation.

Attributes

Attributes of objects store the states of objects. Like variables they are assigned a
type. If an attribute is of type T , we write a : T . Attributes can be read or written
in a program’s execution. Objects in Heap DL do not include attributes directly.

Attributes are represented as non-rigid functions. The values of non-rigid func-
tions are not fixed from the beginning but can be manipulated in program statements
and updates. Therefore they are useful to capture the notion of attributes. For each
attribute a of a class C we introduce a non-rigid function symbol aC : C Ñ T if
a : T . Reading access to the attribute of the object o of class C is then represented
by the term aCpoq. Writing access is written as aCpoq � m for example, where m is
of the type of a.

As mentioned before, the syntax for the attributes of arrays does differ from this
definition but we assume that the reader can abstract away from that.

Side-effects

The formal definition of Heap programs, which we will give in Definition 8.6, de-
mands that expressions in assignments or conditions are terms and as such side-
effect-free. This is not an actual restriction of the set of Heap programs, because
programs with expressions which have side-effects can always be transformed to
programs without those.

8.2. HEAP DYNAMIC LOGIC 131

To simplify the calculus, we assume that all programs which contain expressions
or assignments with side-effects are transformed like that. The transformation is
done by introducing new program variables and replacing the side-effect-carrying
assignments by a series of assignments to the new variables. Those assignments do
not have effect on any other variable than the assigned one. [BHS07] describes this
technique in detail in Section 3.6.2.

Some of the examples which we will examine in Section 8.4 might have side-effects
in their expressions. This was not a problem, because we use the theorem prover
KeY which performs the transformation of expressions which have side-effects by
itself.

Exceptions

Heap programs do not include exceptions. This does not actually restrict the lan-
guage because programs using exceptions can be transformed to programs without
them. Statements which could throw exceptions can be surrounded by a series of
checks on the critical variables for the respective events that would throw an excep-
tion2.

8.2.2 Syntax of Heap DL

Classes of the object-oriented programming language Heap are represented as types
in our logic. The inheritance relation between classes is mapped into the logic by
introduction of a subtype relation on the types. The formal definition of the Heap
DL type system3 follows.

Definition 8.1 (Heap DL Types). A Heap DL type system THeap � pTHeap,¤Heapq
is a finite set of types THeap and a relation ¤Heap with the following properties.

• tJ,Ku � THeap, where J is called the universal type and K is called the empty
type.

• ¤Heap is a reflexive partial order on THeap, i. e. for all types A,B,C P THeap,

– A ¤Heap A

– if A ¤Heap B and B ¤Heap A then A � B

– if A ¤Heap B and B ¤Heap C then A ¤Heap C.

• A is called a subtype of B if A ¤Heap B.

• K ¤Heap A ¤Heap J for all A P THeap.

• T is closed under greatest lower bounds with respect to ¤Heap, i. e., for any
A,B P THeap, there is an I P T such that I ¤Heap A and I ¤Heap B and for any
C P THeap such that C ¤Heap A and C ¤Heap B, it holds that C ¤Heap I. We

2The KeY prover can handle exceptions directly, but we do not include them in the logic,
because we want to keep the calculus as small as possible.

3This definition is inspired by Definitions 2.1, 3.1 and 3.2 of [BHS07].

132 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

write AXB for the greatest lower bound of A and B and call it the intersection
type of A and B. The existence of A X B also guarantees the existence of the
least upper bound AYB of A and B, called the union type of A and B.

• Then the direct subtype relation ¤0� THeap � THeap between two types A,B P
THeap is defined as:

A ¤0 B iff A ¤Heap B and A �� B

and C � A or C � B for any C P THeap with A ¤Heap C and C ¤Heap B.

• tint, booleanu � THeap with K ¤0 int ¤0 J, K ¤0 boolean ¤0 J, int ¦
boolean and boolean ¦ int.

• There is a type Null P THeap with K ¤0 Null.

• There is a type Object P THeap with Object ¤0 J.

• AXB � K for all A P tboolean, intu and B ¤Heap Object.

• If A ¤Heap Object, then Null ¤Heap A for all A �� K P THeap.

Note that we leave out the subscript While if it is clear about which version of
the respective entity we are talking about.

A Heap DL signature is similar to that of the While language, except that
there are two types of function symbols, rigid ones and non-rigid ones. The formal
definition follows4.

Definition 8.2 (Heap DL Signature). A Heap DL signature for THeap is a tuple
pVl,Vp,Fr,Fnr,P , αq. Vl,Vp,P , α are defined as in Definition 3.2 for While DL,
except that here they are based on a Heap DL type system THeap instead of TWhile.
Fr is a set of rigid function symbols and Fnr is one of non-rigid function symbols.
α has the following property concerning Fr and Fnr: αpfq P T n

Heap � THeap for all
f P Fr YFnr of arity n. The set of function symbols Fr contains the elements of F
defined in Definition 3.2 and additionally:

• The object repository access function

getA : intÑ C

for any A P THeapztK, Null, int, boolean,Ju.

• The literal (nullary function symbol) null of type Null.

The set of non-rigid function symbols Fnr contains the following elements.

• The object enumeration function

nextC :Ñ int

for each type C P T ztK, Null, int, boolean,Ju.
• An attribute function aC : C Ñ T for each attribute a : T of class C.

4This definition is inspired by Definition 3.4 of [BHS07] and the handling of attributes in [BP06].

8.2. HEAP DYNAMIC LOGIC 133

We use the notation f : A1, . . . , An Ñ A for αpfq � ppA1, . . . , Anq, Aq and f P
Fr Y Fnr.

Terms and updates in Heap DL are defined as they are in While DL with the
adaptation to non-rigid function symbols. Those symbols can be part of a term
and in updates they can be assigned new values. The definition of terms uses the
definition of updates and vice versa. This is not a mistake, but a deliberate decision
made to make the concept as intuitively understandable as possible5.

Definition 8.3 (Heap DL Terms). Given a Heap signature pVl,Vp,Fr,Fnr,P , αq
for a type system THeap, we inductively define the system of sets tTHeap,AuAPTHeap

of
terms of type A the same way as we did for While DL in Definition 3.6 with the
exception of the following adaptations:

• F is replaced by Fr Y Fnr, and

• all other entities (for example updates) refer to their respective Heap DL version.

σ : THeap Ñ THeap is the function which returns the type A of each term t P THeap,A.

In addition to the updates of non-rigid function symbols, we introduce another
type of updates, called quantified updates. A quantified update describes the ma-
nipulation of a an unbounded number of updates. This is in particular useful when
talking about datastructures which are of a finite but unknown length as for example
linked lists.

Definition 8.4 (Heap DL Updates). Let pVl,Vp,Fr,Fnr,P , αq be given as a Heap
DL signature for the type set THeap, the set UHeap of syntactic updates is inductively
defined as the least set such that:

• pv :� tq P UHeap and pu1 || u2q P UHeap as defined in Definition 3.5

• pfpt1, . . . , tnq :� tq P UHeap for all terms fpt1, . . . , tnq P TA with f P Fnr and
t P THeap,A1 such that A1 ¤Heap A (Function update)

• p@x ϕ uq P UHeap for all u P UHeap, x P V and ϕ P F (Quantified update)

Ground terms are defined in Heap DL exactly like in While DL (Definition
3.8) which is why we do not repeat the definition here. The definition of rigid terms
has to take the absence of non-rigid function symbols into account6.

Definition 8.5 (Rigid Terms). A Heap DL term t is rigid, if it complies to Defini-
tion 3.9. In particular, t does not contain non-rigid function symbols f P Fnr.

Heap programs have the same constructs as While programs (Definition 3.10),
except that variables point to objects and thus have attributes and the respective
Heap DL types. Attributes can be assigned new values and thus these assignments
have to be included in the definition of programs.

5The definitions of Heap DL terms and updates are inspired by [BHS07], Definition 3.7 and
3.8.

6This definition is taken from [BHS07], Definition 3.31.

134 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

Definition 8.6 (Heap Programs). The set of programs PHeap is inductively defined
the same way as PWhile (Definition 3.10), except that all entities are based on their
respective Heap DL version and with the following additional element.

• fpt1, . . . , tnq � t; P PHeap, where f P Fnr and t P T a ground term of the same
type as the output type of f and t1, . . . , tn ground terms.

In the example programs in this thesis, the program statement o = new C() for
some variable o and some class C can occur. This is the creation of an object. We do
not introduce such a statement in the logic. We rather assume that the statement
is an abbreviation for the statement7

o :� getCpnextCq || nextC :� nextC �1.

Finally, we have to adapt the definitions of formulae of While DL to make them
suitable for Heap DL.

Definition 8.7 (Heap DL Formulae). Let a signature pVl,Vp,Fr,Fnr,P , αq for the
type system THeap and a Heap program p be given. Then the set FHeap of Heap
DL formulae is defined the same way as While DL formulae except that the used
entities are of the respective Heap DL versions, for example PHeap instead of PWhile.

Definition 8.8 (Rigid Formulae). A rigid Heap DL formula ϕ is defined the same
way as rigid While DL formulae except that all used entities are of their respective
Heap versions.

Definition 8.9 (Free Variables in Heap DL). We define the set fvpuq of free vari-
ables of an update u for variable updates and parallel updates the same way as for
While DL except that the occurring entities are of their respective Heap versions.
Additionally, we define the free variables of a function update as

fvpfpt1, . . . , tnq :� tq � fvptq Y
¤

i�1...n

fvptiq.

We define fvptq, the set of free variables of a term t the same way as for While
terms except that

fvpfpt1, . . . , tnqq �
¤

i�1,...,n

fvptiq

is defined for both types of function symbols, which means for f P Fr Y Fnr.

We define fvpϕq, the set of free variables of a formula ϕ, exactly the same way as for
While formulae, except that all used entities are in their respective Heap entities.

7We assume that this transformation is done for the program, because it keeps the number of
program statements and thus the definition of the logic and the calculus as simple as possible.

8.2. HEAP DYNAMIC LOGIC 135

8.2.3 Semantics of Heap DL

We define the semantics for Heap DL similar to the one for While DL. Note that
also in Heap DL models, the interpretation function IHeap assigns functions only
to rigid function symbols. The semantics of non-rigid function symbols is given as
function assignment later in this section.

Definition 8.10 (Heap DL Model). Given a Heap DL type system THeap and a
Heap DL signature, a Heap model is the triple MHeappDHeap, δHeap, IHeapq with
the following properties.

• δHeap is a type function

δHeap : DHeap Ñ THeapztKu,

• The domain DHeap, is defined as

DHeap �
¤

APTHeap

DA

with
DA � td P DHeap | δHeappdq ¤ Au

and the fixed domains

Dint � t. . . ,�2,�1, 0, 1, 2, . . . u,
Dboolean � ttrue, falseu, and

DNull � tnullu.

Each domain DA for A P THeapztNull, int, boolean,K,Ju contains countably
infinite many distinct domain elements.

• The interpretation IHeap maps each rigid function symbol f : A1, . . . , An Ñ A P
Fr to a function

IHeappfq : DA1 � � � � �DAn Ñ DA

and each predicate symbol p : A1, . . . , An P P to a subset

IHeapppq � DA1 � � � � �DAn ,

with A1, . . . , An, A P T .

IHeap maps integer and boolean literals and operations as IWhile does. Furthermore
we demand that IHeappnullq � null . I maps the repository access function symbol
getC to the actual function, which maps an object o to its index, the non-negative
integer i for which the equation IpgetCqpiq � o holds. For negative integers getC is
also defined, but its values are unknown.

As we mentioned in Section 8.2.1, there is an object repository8 for each class C.

8The definition is taken from [BHS07], Definition 3.52.

136 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

Definition 8.11 (Object Repository). Given a type C P THeap, the object repository
RepC is the set of all domain elements e of type C:

RepC :� te P DHeap | δHeappeq � Cu

The difference between the domain DA of a type A and the repository RepA is
that the latter contains the elements of type A only and not the ones of A’s subtypes.

We defined logical variable assignments for While DL in Definition 3.19. For
Heap DL we define it exactly the same way, except that the used entities are of their
respective Heap DL versions, for example a Heap DL model instead of a While
DL model.

In Heap DL not only program variables can be assigned values, but also non-
rigid functions can be manipulated in programs. We embrace those two in the set
of locations.

Definition 8.12 (Location). Given a Heap DL signature and a model, the set L
of locations is defined as

L � Vp Y tpf, d1, . . . , dnq | f P Fnr of arity n,
f : A1, . . . , An Ñ A,
di P DAi

for i � 1, . . . , nu

As a convention, we write δpfq � A for f : A1, . . . , An Ñ A so that δ is defined for
all l P L.

Therefore we extend the notion of program variable assignments of While DL
(Definition 3.21) by defining the function γ not only for program variables but for
the set L.

Definition 8.13 (Location Assignment). Given a model MHeap � pDHeap, IHeapq,
a location assignment is a function γHeap such that

γHeapplq P DA for l P LMHeap
with δplq � A

A Heap program’s state space is then defined similar to the one of While
programs, except that the extended notion of γ is used here.

Definition 8.14 (Program State and State Space). Given a model M � pD, δ, Iq,
the set SM of program states is defined as

SM � tγ | γ : LM Ñ Du

The extended state space SM8 is defined analogous to SM8 for While DL.

Definition 8.15 (Semantics of Terms). Let M � pD, Iq be a model, β a logical
variable assignment and γ a location assignment. We inductively define the valuation
function valM,β,γ for terms the same way as for terms in While DL (Definition 3.24),
with the addition of the definition of non-rigid functions:

8.3. HEAP DL CALCULUS 137

• valM,β,γpfpt1, . . . , tnqq � γpf, valM,β,γpt1q, . . . , valM,β,γptnqq for every f P Fnr and
ti P T.

The semantics of updates and terms corresponds to their versions in While DL
except that the non-rigid functions and quantified updates are considered. Like in
the definitions of their syntax, the two definitions depend on each other.

The exact definition of the semantics of quantified updates is rather complex. We
abstain from quoting it here because of space limitations. Intuitively, a quantified
update p@x ϕ uq applies the update u to all locations x which fulfill the formula
ϕ. For a detailed explanation of the semantics of quantified updates see [Rüm06],
Section 4.

Definition 8.16 (Semantics of Updates). Updates u P U are interpreted as partial
functions from the state space to partial location assignments

JuKM,β : SM Ñ pLM Û Dq,

where Û D stands for a partial function to the domain D. The semantics for
single and parallel updates is defined the same way as for While DL updates. The
semantics of function updates then is

Jfpt1, . . . , tnq :� tKM,βpγqpxq :� tpf, valM,β,γpt1q, . . . , valM,β,γptnqq ÞÑ valM,β,γptqu .

Definition 8.17 (Semantics of Programs). Given a M � pD, Iq, a program is a
function:

JpKM : SM8 Ñ SM8 .

The semantics of Heap DL programs are defined the same way as of While pro-
grams (Definition 3.25), except that the used entities are of the respective Heap DL
versions. Additionally, we define the semantics for function assignments as follows.

Jfpt1, . . . , tnq � tKMpγqpxq �
"

valM,γptq if x � pf, valM,γpt1q, . . . , valM,γptnqq
γpxq otherwise.

Finally, we can define the semantics of Heap DL formulae.

Definition 8.18 (Semantics of Formulae). The semantics of Heap DL formulae are
defined the same way as While DL formulae (Definition 3.29) with the adaptation
that all used entities are of their respective Heap versions.

8.3 Heap DL Calculus

We extend the While calculus, which we presented in Section 3.3, to make it
suitable for Heap DL formulae. The essential changes are the handling of the more
complex type system, object creation and attribute manipulation.

The definitions of sequent formulae and proof trees for Heap DL calculus are the
same as for While DL, except that the occurring formulae are Heap DL formulae

138 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

Γ ñ getCpiq � getCpjq Ñ i � j,∆
closeSameIdx

Γ ñ pgetCpiq � getDpjqq,∆
closeClassDiff

Γ ñ getCpiq �� null,∆
closeNull

Γ ñ @o : Cp
�

D¤CpDi int getDpiq � oq _ o � nullq,∆
closeExistsOrNull

Figure 8.2: Class Rules of the Heap Calculus

instead of While DL ones. We include the classical first-order rules which we
showed in Figure 3.3 in our calculus in exactly the same form as in While DL.

The closing rules shown in Figure 3.4 are included in the Heap calculus as well
as all equality rules of Figure 3.5.

The calculus rules concerning symbolic execution of programs can widely be used
in the Heap DL calculus as well. This applies to the modality rules in Figure 3.6
and to the assignment and conditional rules in Figure 3.7. The latter two can be
included into the Heap calculus, because we assume that expressions which have
side-effects are transformed into side-effect-free ones, otherwise the calculus would
be more complex.

We access the object repository via the function getC . This way there are a few
more rules which enable us to close a proof. See the rules in Figure 8.2.

Like for the While DL calculus we do not explicitly mention rules for handling
arithmetic or the application of updates here. We refer to the respective references
in Section 3.3. We include the rules to introduce fresh metavariables of Figure 3.12
in the calculus, because also for heap programs our algorithm applies the technique
of closing proofs by constraints (Section 3.4).

Loop rules

Concerning the calculus rules which handle loops in programs, we include the rules
loopUnwind (Figure 3.8) in our calculus. We also add the improved invariant rules
invRuleMod and invRuleTermMod to the calculus (Figure 3.10), but we have to adjust
the definition of modifier sets to make them suitable for our logic, because in Heap
programs not only program variables but also attributes can be modified.

Definition 8.19 (Syntax of Modifier Sets). Let pVl,Vp,F ,P , αq be a signature for
a type system THeap. A modifier set Mod is a subset of Vp Y Fnr.

This definition is actually quite coarse. A modifier set that contains a non-rigid
function symbol aC basically says that the attribute a of any object of class C
might be changed in the program’s execution. It is possible to define modifier sets

8.3. HEAP DL CALCULUS 139

more specific (see for example Definition 3.61 in [BHS07]), but for our purpose this
definition is sufficient.

In the application of the invariant rule invRuleMod for each element in a modifier
set an anonymizing update is created. Because non-rigid function symbols in the
modifier set make a statement about a manipulation of all possible objects of the
class, we have to form a quantified update, which anonymizes the attribute for all
objects of this class. This is the reason why we introduced the quantified update
in Definition 8.4. Thus an attribute a of class C in the modifier set leads to the
following quantified update.

@o true aCpoq :� aCpoq
�pX1, . . . , Xnq

where aCpoq
� is a fresh function symbol for the respective attribute of each object

and X1, . . . , Xn are the collected metavariables as described in Definition 3.40.

Definition 8.20 (Semantics of Modifier Sets). Given a signature pVl,Vp,F ,P , αq,
let M � pD, δ, Iq be a model, β a logical variable assignment and p a program. A
pair of states pγ1, γ2q � SM � SM satisfies a modifier set Mod

ps1, s2q |ù Mod

iff, for all v P Vp the following holds

γ1pvq �� γ2pvq implies that v P Mod,

and for all t � fpd1, . . . , dnq with f P Fnr and d1, . . . , dn P DHeap holds

γ1pf, d1, . . . , dnq �� γ2pf, d1, . . . , dnq implies that f P Mod .

The modifier set Mod is correct for the program p, if

pγ1, γ2q |ù Mod

for all state pairs pγ1, γ2q, where γ1 is the start state of p and γ2 the result state of
it.

A minimal modifier set of a program contains only the variables and attributes
which are actually changed in the program and nothing more.

Definition 8.21 (Minimal modifier set). Let p be a program. A minimal modifier
set Modp of a program p does not contain any v P Vp or f P Fnr for which

γ1pvq � γ2pvq

or
γ1pf, d1, . . . , dnq � γ2pf, d1, . . . , dnq

holds for some di P DHeap and for all pairs of states pγ1, γ2q P S � S, where γ1 is a
start state of the program and γ2 is the result state of the program.

140 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

With these extended versions of the modifier set, the definitions of the anonymiz-
ing updates (Definition 3.40) and anonymizing updates with respect to a modifier
set (Definition 3.40) are the same as for While DL except that the new definitions
of updates are used.

The invariant rules invRuleMod and invRuleTermMod, which use anonymizing
updates, are then the same for Heap DL except that we assume that the used
updates comply to the definitions of this section.

8.4 Non-termination Analysis of Examples

In this section, we will examine four examples of Heap programs with respect to
their termination behavior. We applied our algorithm on them to see how well
our method can be transfered to this programming language. We did not use our
software for the experiments, because we designed it for While programs in the
first place and thus it is not fully capable of dealing with complex data structures
in open goals.

However, we manually did the steps which the invariant generator does and
invoked the KeY prover in the point of the algorithm where the invariant generator
would invoke it. The KeY version which we used for these examples was version 76
of the CounterExamples branch.

In the evaluation we did not follow any of the particular heuristics of the ones
described in Chapter 5. We rather assumed that there are “perfect” heuristics
which do have the intuition which we have in order to pick the useful open goals.
We assume that it is always possible to adjust heuristics in a way that they work
like in these examples. Thus we examined in these examples if it is possible to
construct a useful invariant rather than for which heuristics the invariant would be
found.

We will now present four examples ArraySum, ChaosBuffer, Traverse
and Takeshi. ArraySum is a program which uses array data structures but the
non-termination invariant is actually not dependent on the contents of the array.
ChaosBuffer uses also an array and here the content of the array is essential for
the non-termination of the program. Traverse is an example of a program where
a linked list as data structure is used. Takeshi is a more advanced example using
linked lists, because here the form of the list is changed during loop execution. We
describe what preparations have been necessary to examine the examples with the
KeY prover and evaluate how well our algorithm worked on them.

8.4.1 Note on Abrupt Termination

In Section 4.1, we explained that the formula rpsfalse states the non-termination
of a program p. This is actually only correct for programs which cannot termi-
nate abruptly. Abrupt termination means that an exception occurs and the pro-
gram instantly dies. The formula rpsfalse is also fulfilled if the program p ter-
minates abruptly. This means that the logic does not make a difference between

8.4. NON-TERMINATION ANALYSIS OF EXAMPLES 141

non-termination and abrupt termination. This is a reasonable definition, because
both behaviors are unappreciated.

By definition, exceptions cannot occur in While programs. In Heap programs
we officially demand that statements which can throw an exception are transformed
into a program fragment, where the critical statement is surrounded by checks for
all possibly critical situations. The programs which we will examine in the following
sections do actually contain statements which can cause exceptions. Because we
like to maintain the readability of the programs we did not transform them into
exception-free programs.

If we apply our algorithm on our examples without regarding the possibility of
an exception, it sometimes does not find input values which lead to non-termination
but values which make the program crash with an exception. The latter is also
good if we are looking for bugs in general, but not if we are especially interested in
detecting non-termination.

To avoid these distracting discoveries of abrupt-termination-bugs, we apply a
trick. Instead of stating the non-termination in a formula like rpsfalse, we surround
our example programs (which are written in Java syntax) with a try-catch block.

rtry t p u catch pException eqt usfalse

This way, all exceptions are caught and thus the program does terminate in a normal
way. If our algorithm can close the proof of this formula it is because of non-
termination and not because of abrupt termination. We applied this additional
preparation in some of the examples if it was necessary.

8.4.2 Example ArraySum

The code of the example program ArraySum is shown in Figure 8.3. The purpose
of the program is to sum up the elements of the array of integers which is given as
input. The summing is done in a while loop over the index of the array elements.
The programmer has made a typical programming error; he forgot to increase the
running variable i in the loop body.

Preparations

For the application of our algorithm on this example we did not have to change the
code of the program itself. We wrote a KeY-file to give the prover some necessary
information about the data structures which were used.

The first preparation is the introduction of the input parameters. In this case,
it is the array int[] a, which we specify as program variable. Like for While
programs, we have to existentially quantify over the input variables. For an array
this is more complicated than for single variables, because we do not only have to
quantify over all possible arrays, but also over all possible lengths of arrays and all
possible contents of arrays. For all these we have to introduce metavariables.

Because we have to quantify over all contents of all possible arrays, we have to
introduce a metavariable of a matrix-like type, containing metavariables for each

142 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

arraysum(int[] a) {

int sum = 0;

int i = 0;

while (i < a.length) {

sum += a[i];

}

return sum;

}

Figure 8.3: ArraySum
This program sums up the contents of an array of inte-
gers. It does not terminate, because the programmer
forgot to increase the running variable i in the loop
body.

entry of each array. Unfortunately, the KeY language does not support this fea-
ture so far. Therefore we assume that we are talking about one particular array,
whose name we already know and whose properties we are going to find out in the
generation of the invariant; in our case it is the array a. Because now we only talk
about one array, it is sufficient to introduce a metavariable of the type of a list for
all possible contents of this array.

The list in our case i called ACONTS and to specify it as a list, we also have to define
what a list is and what properties it has. The KeY language provides syntactical
elements for that. We will not present all details here, because it is basically the
usual recursive definition of lists. Additionally, we introduce a metavariable ALEN

for the length of a.

The actual proof obligation is written as follows. We introduced the precondition
a �� null here. As mentioned before, we do not quantify over all possible arrays.
Therefore we have ensure that the specific array we are talking about is not null.
If this precondition was not fulfilled it would make no sense to look for a non-
terminating loop, because the program would crash with an exception anyway. The
complete proof obligation looks like the following.

a �� nullÑ
tlengthArraypaq :� ALEN, @k; a[k] :� alInt(ACONTS, k)u

rtry t arraySum(a); u catch t u s false

The update in this formula introduces the respective metavariables, where alInt is
the access to the metavariable list which assigns a metavariable for each element of
the array.

For the application of the invariant rule invRuleMod, we need a modifier set. For
this program the set tsumu is a minimal modifier set. If the programmer of this
program had determined the modifier set himself, he would have noticed that the

8.4. NON-TERMINATION ANALYSIS OF EXAMPLES 143

running variable i is not changed in the program, which is actually the bug of this
program.

Application of the algorithm

We apply the algorithm as it is described in Chapter 5 on this example. We will not
show the proof trees here, but examine the results of the proofs of each iteration.

Iteration no 1. With invariant candidate inv 1 � true in the first iteration the
prover can close the proof with the following constraint.

0 ALEN,

It says that the array must at least contain one element.

Evaluation

The application of the algorithm on this simple example gives reason to be opti-
mistic that the developed method is applicable to more complex programs than just
While programs. The program contains an array data-structure, but the invariant
is actually not dependent on the contents of the array. We suppose that most of
the programs which have this property could be handled by our algorithm, because
the form of the invariant has the same level of complexity as invariants of While
programs.

8.4.3 Example ChaosBuffer

Figure 8.1 shows the code of the program ChaosBuffer9. The chaos buffer is a
class which has an array and an attribute cursor which is an integer pointing to a
place in the array. When a new value is stored in the array, the buffer goes through
the array starting with the place where the cursor points to until it finds an element
in the array which is 0. At this place, the new value is stored. If the buffer reaches
the end of the array in the search for a free place, the cursor is set to 0 and the
search goes on from there.

The programmer of this program forgot to think about the situation when no
entry of the array is equal to zero. In this case the cursor runs through the array
over and over again, desperately looking for a free spot in the array. We applied
our algorithm on the function insertInput which performs the insertion of a new
element.

Preparations The preparations of this example are similar to the ones for the
example ArraySum. The data structure of a list is described in the logic and
for all input parameters natural metavariables are assigned. The proof obligation

9We thank Juri Ganitkevitch for the contribution of this example.

144 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

contains the precondition a �� null, which has the same purpose as in the example
ArraySum. Thus the proof obligation for this example is the following.

a �� nullÑ

t lengthArraypaq :� ALEN,

@k a[k] :� alInt (ACONTS, k),
n :� NEW, c :� CURS u
r try t insertInput(n,a,c); u catch t us false

A minimal modifier set for this program is tcursoru.

Iteration No. 1 With the invariant candidate inv 1 � true the prover can con-
struct a proof which has several open goals. One of them is the following.

cursor ¥ ALENñ a � null

The formula a � null originates from the precondition and thus is not useful for
the invariant refinement. We use the negation of the formula cursor ¥ ALEN for the
new invariant candidate and obtain:

inv 2 � true ^ cursor ALEN

Iteration No. 2 With the invariant candidate inv 2, we obtain again a number of
open goals of which one is the following.

cursor ¤ �1, cursor ¤ �1� ALENñ a � null

The formula cursor ¤ �1 � ALEN is not useful for invariant refinement, because
its negation describes the situation where the cursor is out of the range of the
array and thus an exception would occur. Therefore, the only interesting formula is
cursor ¤ �1 whose negation we add to the invariant candidate and obtain candidate
inv 3.

inv 3 � true ^ cursor ALEN^ cursor ¡ �1

Iteration No. 3 With invariant candidate inv 3 the proof can be closed with the
following constraints10.

cursor a.length^�1 cursor^ a.length 2^ a[0] != 0

This constraint says that the array has only one element and this one is not equal
0. This describes the smallest possible counter example for the termination of the
program.

10We simplified the constraints and retranslated them into terms of the program’s data structure
to make them more human readable.

8.4. NON-TERMINATION ANALYSIS OF EXAMPLES 145

class Node {

int value;

Node succ;

// constructor

Node(int newValue) {

this.value = newValue;

}

}

traverse(Node head) {

Node run = head;

while (run != null) {

run = run.succ;

}

}

Figure 8.4: Traverse
This program is a simple traversal of a linked list. It does
not terminate if the input list is cyclic.

Evaluation

The non-termination of the problem can be solved using our approach. The algo-
rithm constructed the smallest possible counter example. This program shows that
the search for the solution is highly dependent on the constraint solver, because in
this example the constraints contribute an essential part of the information about
the counter example. Finding such small counter examples is very useful for the
debugging process because it shows the relevant aspects for this non-termination
but without a complex specification of the example itself.

8.4.4 Example Traverse

The program Traverse is shown in Figure 8.4. The used data structure is a linked
list and the action that is performed in the program is a basic list traversal as it
implemented in many standard list operations.

The program looks completely correct at first sight; it is written as most pro-
grammers would write it. The problem of non-termination occurs when the list
whose starting node is given as input contains a cycle. In this case none of the
nodes has the value null in its attribute succ, which means that the loop condition
is always true and thus the loop never terminates.

Preparation

As for the array examples, we have to prepare a KeY-file for the prover. We
define the datastructure of a list of integers in the logic and introduce metavariables
for all possible input values. The definition of the list is done as in the example
ArraySum. The input parameter of the program is the head of the list.

In contrast to example ArraySum, we do not assume that we have only one
list (respectively array) whose properties we have to define, but instead we quantify

146 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

over all possible lists. The introduced metavariables are idHead for the position of
the head in the list and kNodes for the length of the list. Because we quantify over
all possible lists, we do not have preconditions in the proof obligation.

We specify that the position of the head node is within range, which means
between 1 and the length of the list. This step is only for shortening the proof,
because if it was out of range the proof would not be closed anyway, because the
program would crash with an exception and thus terminate anyway (see the note
on abrupt termination in Section 8.4.1).

ñ idHead ¥ 0^ idHead kNodes ^ t. . . u
pa �� nullÑ rtry t traverse(a); u catch pException eq t u s falseq

We left out a quite complex update in the obligation. It basically specifies the
access to the list. We abstain from explaining all details here, because some of the
definitions are KeY specific and their semantics are space consuming to explain. A
minimal modifier set for this program is the set trunu.

Application of the algorithm

Iteration no. 1 We started the algorithm with the first invariant candidate

inv 1 � run � null_ createdNodeprunq.

Apparently, we did not start the algorithm with the usual initial invariant true. The
reason is a slight difference between the dealing with objects in Java and in Heap
DL. The invariant above looks like a tautology in the first place, because in Java a
variable which does not point to an object which is already created is always null.
The problem is that technically in Heap DL the situation can be expressed that a
variable points to an object which is not created yet, that means that this objects
index is higher than the respective nextC counter is. This situation can never occur
in Java programs and thus we include this information in the invariant candidate
from the beginning. Thus, the formula makes sure that no unreachable states are
considered in the proof.

The results of the iteration of the algorithm with invariant candidate inv 1 is an
open proof with several open goals. Because of space limitation, we only pick the
interesting formula, which occurs in the antecedent of one of the open goals.

run � null

We form the new invariant candidate inv 2 with the negation of this formula.

inv 2 � prun � null_ createdNodeprunqq ^ run �� null

Iteration no. 2 In the second iteration of the algorithm, the prover can close the
proof with the following constraints11.

idHead � 0^ succNodeprunq � run^ kNodes � 1

11We simplified the constraint to make it more human readable.

8.4. NON-TERMINATION ANALYSIS OF EXAMPLES 147

The constraint says that the list is only one element long and that run points the
first element and that its succ attribute points to run itself. The invariant can be
simplified to

inv 2 � createdNodeprunq ^ run �� null,

which means that it only says that the node run actually has to be created.

Evaluation

This example shows that the algorithm is also capable of working on programs with
a linked list as data structure. The algorithm did find a counter example for the
termination without human interaction in the proof construction. The preparations
of the proof obligation and the creation of the slightly enhanced initial invariant
candidate could be done automatically as well.

The algorithm was able to find a situation in the program’s initial state which
lead to the non-termination of the program. The description of this situation in-
cludes the description of the structure of the heap. The counter example that was
found is actually the simplest possible one. This is of course not the most gen-
eral description of a critical situation, but a very useful one because it explains the
problems in the program’s execution without overwhelming complex details.

8.4.5 Example Takeshi

The last example12 is a more tricky one. It is called Takeshi and its code is shown
in Figure 8.5. It uses the same linked list data structure as the example Traverse.
The definition of the class Node is shown in Figure 8.4 in the description of the
Traverse example.

The program Takeshi traverses the linked list starting with the head the same
way as it does in example Traverse. But this time it appends a new node at the
end of the list in each iteration of the loop. That means the list grows as fast as it
is traversed, provided that tail follows head in the same list. Thus the traversal
never reaches the end of the list. This is a very tricky example because the form of
the heap is changed during the execution of the loop and the program itself does
not know if the input nodes head and tail are actually connected in the list.

Preparations

The preparations of the program are the same as for the example Traverse, with
the exception that we have to define the second input, the last node of the list, as
well.

ñ idHead ¥ 0^ idHead kNodes^ idTail ¥ 0^
idTail kNodes^ t . . . upa! � null^ z! � nullÑ

rtakeshi(a,z);s falseq

A modifier set of this program is more complex than for the Traverse example,
because in the loop new objects of type Node are created. With each object creation

12We thank Mattias Ulbrich for the contribution of this example.

148 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

takeshi(Node head, Node tail) {

Node run = head;

while (run != null) {

Node fresh = new Node(5);

tail.succ = fresh;

tail = tail.succ;

run = run.succ;

}

}

Figure 8.5: Takeshi
This is a program which traverses a linked list and adds a new node in
at the end of the list with each step of the traversal. This program does
not terminate whenever run and tail are elements of the same list and
run is positioned before tail in the list. The definition of the class Node
is already given in Figure 8.4.

the counter nextNode is increased. Additionally the attributes of the new Node object
are assigned new values. A modifier set is then the following.

trun, tail, nextNode, valueNode, succNodeu

Application of the algorithm

Iteration No. 1 With the invariant candidate inv 1 � true, the first iteration of
the algorithm is performed. The result is an open proof with several open goals.
The interesting formula in the antecedent of one of the goals is

run � null

It is the negation of the loop condition and thus we add the loop condition to the
invariant candidate and obtain inv 2.

inv 2 � true ^ run �� null

Iteration no 2 The second iteration of the algorithm yields several open goals.
We will not state them explicitly here because of space limitations. The formula
which is the most promising one for our purpose is

tail � run

from the succedent of the open goal. It describes the situation when the tail and
the run variable point to the same object. We add the formula to the invariant
candidate and obtain inv 3.

inv 3 � true ^ run �� null^ tail � run

8.4. NON-TERMINATION ANALYSIS OF EXAMPLES 149

And with this invariant candiate the proof can be closed. The resulting constraint
is the following13.

pidTail � idHead^�1 idHead^�1 idTail^ idTail kNodesq _ . . .

kNodes is the number of nodes in the list and idHead and idTail are the positions
of the nodes head and tail in the list. The constraint basically says that the nodes
head and tail are identical and within range.

Evaluation

The algorithm solved this example by finding a trivial counterexample where run and
tail point to the same object. Interestingly, no human interaction or extraordinary
invariants were necessary. We simply followed the description of the algorithm in
Chapter 5 using only the creation methods no 1 and 2.

This example was the trickiest one we found so far because it uses a heap struc-
ture whose appearance is changed during the loop execution and yet the algorithm
was powerful enough to at least describe one situation where the program turns into
an endless loop, even if it was not the most general one.

8.4.6 Evaluation of the Algorithm for Heap Programs

We presented four examples of non-terminating Heap programs. The examples
contained common datastructures which make use of the heap, namely arrays and
linked lists. They contained programming errors which could realistically occur in
the software development process.

The experiments showed that the algorithm works on such programs in principle.
It solved the examples without any modifications in its behavior. Only the example
Traverse needed some slightly enhanced initial invariant candidate, whose neces-
sity we justified in Section 8.4.4. This candidate could be created automatically in
an actual deployment of the software in future.

In conclusion, the experiments yielded good results which lead to our assumption
that the approach is worth further exploring concerning the application to Heap
programs.

13We simplified the constraint to make it more human readable.

150 CHAPTER 8. NON-TERMINATION ANALYSIS OF HEAP PROGRAMS

Chapter 9

Summary and Conclusion

Although the idea of termination analysis of programs was raised decades ago, no
one actually tried to develop a tool which specifically looks for non-termination in
imperative programs. We made the first step into this direction and there are many
more to go. Because this part of termination analysis is only rarely investigated
so far, there was no standardized problem set which could be used to compare the
quality of different approaches. As a starting point, we built up a database of
non-terminating programs to be able to compare different approaches and settings.

We developed an algorithm to analyze programs for non-termination. In the
development, we examined how to express the non-termination of a program in dy-
namic logic. The starting point of the algorithm is a formula which existentially
quantifies over all possible program inputs and states the non-termination of the
program. In the execution of the algorithm, invariants are generated. These in-
variants are used to prove the non-termination of the program with the help of
an external theorem prover. The output of a successful run of the algorithm is a
description of the set of inputs which lead the program into an infinite loop.

We implemented the algorithm as a Java software using the theorem prover
KeY as back end. The software provides heuristics for the search of the necessary
invariant. We ran a number of experiments on our sample database to explore the
usefulness of the heuristics and measure the quality of our approach.

Our software is able to prove the non-termination of 75% of the examples in the
database. In many cases the tool found a description of the set of critical inputs
which was as general as possible. For other problems at least a counter example for
the termination of the program was found, sometimes even the simplest one. Among
the solved problems were all programs which we considered as common programming
errors.

Our tool can be seen as the prototype of a debugging tool, alerting the program-
mer when she is about to write a non-terminating program. Our approach is thus
an enrichment to the software development process. It attacks the problem of ter-
mination analysis from the other side, namely the non-termination side. It can thus
be considered as a complement to algorithms which analyze programs with focus
on termination only. There is the idea of running two analysis tools at the same
time: one focussing on the termination, one on non-termination. The tool which

151

152 CHAPTER 9. SUMMARY AND CONCLUSION

terminates sucessfully at first announces the result of the overall analysis then.

9.1 Related Work

In Chapter 1, we already mentioned research projects in the field of non-termination.
Now that we have presented our approach, we would like to additionally mention
some studies, which use similar methods as ours.

In our approach we generate invariants which are in particular useful for the proof
of non-termination. The field of invariant generation in general is heavily researched
though. Most of the projects here are interested in generating invariants by examin-
ing the relations between program variables. Those invariants are generated without
the particular purpose of proving non-termination. Most of these projects are based
on the work of Cousot in the 70ies ([CH78]), which introduced and used abstract
interpretation. Recent publications on this topic are [Lei05], [BL99], [BBM97] and
[RCK04] for example.

[BBM97] compares the two basic approaches to prove that a given property does
hold in a program’s loop execution starting from a specified set of start states:
forward propagation and backward propagation.

Forward propagation starts with the given set of start states as initial set. Then,
the operation which is defined in the loop body is performed on the states of the set.
The states which are reached by this operation are included into the set of states by
widening of the property which describes the (initial) set. This step is performed
until no new states can be included anymore. In other words, a fixpoint iteration
on the set of states is performed until a fixpoint is reached. If the set which is the
fixpoint is a subset of the set of states which fulfill the property in question, then
we have proven that the property is preserved in the loop execution.

In contrast, backward propagation starts with the set of states for which the
property in question holds. Then we examine if there are states which are reachable
by execution of the loop body from states where the property does not hold. These
states, which are reachable from states which violate the property, are then excluded
from the set of states. We perform this operation on the set of states until the set
is not reduced anymore. This is also a fixpoint operation on the set of states. The
resulting set of states contains the states from which the program can be started so
that the property in question is preserved. If the given set of start states is a subset
of this one, we have proven that the program preserves the property for the given
set of start states.

9.1. RELATED WORK 153

Our algorithm has the characteristics of backward propagation, although in our
case the property in question, namely the invariant, is not given beforehand, but
refined in the process of backward propagation. We start with the most general set
of states which is described by the invariant candidate true. The refinement of the
invariant candidate by formulae from open goals of the third branch, the use-case
branch of the invariant rule, makes sure that the invariant candidate implies the loop
condition. This leads to a description of a useful set of start states for an infinite
loop1.

Then the invariant candidate is further refined by open goals from the second
branch, the body-branch of the invariant rule. This refinement is similar to the
refinement in backward propagation, because the dynamic-logic formula describing
that the invariant is preserved is equivalent to the formula of the weakest precon-
dition which is used to define the fixpoint iteration of the backward propagation
in [BBM97]. The difference of our refinement methods to the one of [BBM97] is
that we sometimes refine too much and actually exclude states from the invariant
although none of their predecessors violate the invariant.

This is the reason for that we sometimes end up with an invariant candidate
which prevents the first branch, the init-branch of the invariant rule, from closing.
In this case the invariant candidate describes a set of states from which if the program
is started in them, it can never reach a state from which the loop is executed. The
check if the first branch can be closed2 then is actually the check if the refinement was
too coarse. In this case we have to backtrack and try a different invariant candidate.
This cannot happen in the classical way of backward propagation, because here no
states are removed from the invariant that are reached by states that violate the
invariant.

We suggested in Section 7.7 the combination of our method and other methods
of invariant generation (for example by abstract interpretation). In experiments, we
used an invariant generator which was developed by Weiß [Wei07] in the scope of
the Key Project. This generator is based on abstract interpretation and makes
use of the KeY prover which was also the basis of our implementation. We used
this invariant generator to produce invariants which were intended to serve as initial
invariant in our algorithm (instead of the formula true). Unfortunately, those invari-
ants were too general to contribute any further information than the formulae true
or the loop condition. Thus these invariants did not much improve the process of
non-termination invariant generation. Nevertheless we think that this idea is worth
further investigation, because we could only try one invariant generator on a limited
number of examples.

Disproving the termination of programs is only one way to prove the incorrect-
ness of programs. Our algorithm produces a description of program inputs which
make the program loop endlessly. We thus generate counter examples for the termi-
nation of programs. Rümmer uses a similar approach to generate counter examples
for program correctness in other aspects. His approach also uses formulae which

1The start state is useful, because if the loop condition was not fulfilled and thus the loop never
executed, it would not make sense to look for an infinite loop.

2This is filter method no 3 in Section 5.2.2.

154 CHAPTER 9. SUMMARY AND CONCLUSION

existentially quantify over program inputs as starting point and a constraint solver
to find a description of the critical input states. For details see [RS07] and [Rüm07].

As we mentioned in Chapter 1, there are research groups which develop tools
to automatically prove the termination of a program. Termination proofs are done
by finding a ranking term or function, which maps the states which the program
traverses during the loop execution into a well-founded domain and showing that
the value of the term decreases in each iteration of the loop. Because in well-founded
domains no infinite descending chains exist, the term finally must reach a minimum
element and thus the loop terminates.

We let us inspire by this technique and discussed the idea of inverse ranking terms
in Section 4.3 to prove non-termination. Like ranking terms, those inverse ranking
terms are also mapped into an ordered domain. For proving the non-termination
we simply prove that the term increases or stays stationary in each loop iteration
instead of that it decreases. Assuming that the loop terminates if the term reaches
a particular minimum element, we thus prove that the term “moves away” from the
termination of the loop. Inverse ranking terms are a reasonable method do prove
non-termination, but we could show in its discussion, that this approach is actually
subsumed by the idea of non-termination invariants.

The software we developed in the scope of this thesis is based on the KeY prover.
The prover is developed in the Key Project [BHS07], which is a joint project of the
three European universities Chalmers Technical University in Gothenburg (Sweden),
University of Karlsruhe (Germany) and University of Koblenz-Landau (Germany).
The KeY prover is a software to verify that programs comply to their specification.
Specifications do usually not only include the properties of termination of a program
but also state more particular properties of the resulting state of a program.

9.2 Future Work

Our work is a proof of concept and as such gives us plenty of paths to go in the
future. We examined and enumerated a number of ways to improve the algorithm
itself to raise the quality of the results in Section 7.7. The most promising points of
attack here are the improvement of the heuristics and the constraint solver.

Besides the mere purpose of non-termination invariant generation, there are fur-
ther applications for which our approach might be useful. The idea of the algorithm
to repeatedly produce proof (attempts) in order to refine an entity which is neces-
sary for the proof itself can be applied to other situations as well. First of all, we
are thinking of invariants for partial correctness proofs here.

In Chapter 8 we already had a peek into to the application of our algorithm
on programs of richer programming languages, in our case Heap programs. It
is a desirable situation to be able to find non-termination bugs in programs of any
modern programming language which implements the concepts of object-orientation.
We made the first step here, there are for sure a lot more to go, for example, analyzing
the termination of programs with even more complex data structures than the ones
we examined in this work.

9.2. FUTURE WORK 155

Figure 9.1: A Development Environment in the Future

It is a major goal of the formal verification community to integrate the methods of
verification into the every-day software development process. The more convenient
the application of those methods of formal verification is, the bigger is their impact
on the quality of software. We have the vision of a non-termination checker which is
integrated into modern software development environments (Figure 9.1). One day,
warnings will pop up the minute we write the code of an endless loop. However, no
matter how well we try to achieve this goal, we will never solve the halting problem.
So, may Alan Turing rest in peace.

156 CHAPTER 9. SUMMARY AND CONCLUSION

Appendix A

While Programs Database

The following programs where already shown in the thesis. See the respective fig-
ures: AlternatingIncr (Figure 4.4), AlternDivWidening (Figure 5.8), Al-
ternKonv (Figure 7.8), Collatz (Figure 3.1), Ex02 (Figure 7.7), Factorial
(Figure 7.10), Gauss (Figure 2.2), UpAndDown (Figure 4.1), and WhileNested-
Offset (Figure 5.11).

alternDiv(int i) {

while (i != 0) {

if (i < 0) {

i--;

i = i*(-1);

} else {

i++;

i = i*(-1);

}

}

}

Figure A.1: AlternDiv

alternDivWide(int i) {

int w = 5;

while (i != 0) {

if (i < -w) {

i--;

i = i*(-1);

} else {

if (i > w) {

i++;

i = i*(-1);

} else {

i = 0;

}

}

}

}

Figure A.2: AlternDivWide

157

158 APPENDIX A. WHILE PROGRAMS DATABASE

complInterv(int i) {

while (i*i > 9) {

if (i < 0) {

i = i-1;

} else {

i = i+1;

}

}

}

Figure A.3: ComplInterv

complInterv2(int i) {

while (i != 0) {

if (i > -5 && i < 5) {

if (i < 0) {

i++;

}

if (i > 0) {

i--;

}

}

}

}

Figure A.4: ComplInterv2

complInterv3(int i) {

while (i != 0) {

if (i > 5) {

i++;

} else {

if (i < -5) {

i--;

} else {

i = 0;

}

}

}

}

Figure A.5: ComplInterv3

159

complxStruc(int i) {

int j = i;

while (i > 0) {

if (i >= j) {

i--;

if (j < 5) {

j++;

if (i-j>2) {

i++;

} else {

j++;

}

} else {

j--;

}

} else {

if (i > 0 & j < 0) {

i--;

if (j < -1) {

j++;

} else {

i++;

}

} else {

i++;

if (j*2 > i) {

j--;

} else {

j++;

}

}

}

}

}

Figure A.6: ComplxStruc

160 APPENDIX A. WHILE PROGRAMS DATABASE

convLower(int i) {

while (i > 5) {

if (i != 10) {

i--;

}

}

}

Figure A.7: ConvLower

cousot(int i, int j) {

while (true) {

if (i < j) {

i = i+4;

} else {

j = j+1;

i = i+2;

}

}

}

Figure A.8: Cousot

doubleNeg(int i, int j) {

while (i*j > 0) {

i--;

j--;

}

}

Figure A.9: DoubleNeg

even(int i) {

while (i != 1 && i != 0) {

i = i-2;

}

return (i == 0);

}

Figure A.10: Even

ex01(int i) {

while (i < 0) {

i--;

}

}

Figure A.11: Ex01

ex03(int i) {

while (i < 0) {

if (i != -5) {

i++;

}

}

}

Figure A.12: Ex03

ex04(int i) {

while (true) {

i--;

}

}

Figure A.13: Ex04

161

ex05(int i) {

while (true) {

;

}

}

Figure A.14: Ex05

ex06(int i) {

while (i >= -5 && i <= 5) {

if (i > 0) {

i--;

}

if (i < 0) {

i++;

}

}

}

Figure A.15: Ex06

ex07(int i) {

while (true) {

if (i > 0) {

i--;

}

if (i < 0) {

i++;

}

}

}

Figure A.16: Ex07

ex08(int i) {

boolean up = false;

while (i > 0) {

if (i == 1) {

up = true;

}

if (i == 10) {

up = false;

}

if (up) {

i++;

} else {

i--;

}

}

}

Figure A.17: Ex08

ex09half(int i) {

int l = i;

i = 0;

while (l - i > 0) {

i = i + (l - i) / 2;

}

}

Figure A.18: Ex09Half

162 APPENDIX A. WHILE PROGRAMS DATABASE

fib(int n) {

int i = 0;

int j = 1;

int t = 0;

while (j != n) {

t = j+i;

i = j;

j = t;

}

}

Figure A.19: Fib

flip(int i, int j) {

int t = 0;

while (i != 0 && j != 0) {

t = i;

i = j;

j = t;

}

}

Figure A.20: Flip

flip(int i, int j) {

int t = 0;

while (i > 0 && j > 0) {

if (i < j) {

t = i;

i = j;

j = t;

} else {

if (i > j) {

j = i;

} else {

i--;

}

}

}

}

Figure A.21: Flip2

gcd(int a, int b) {

int t = 0;

if (b > a) {

t = a;

a = b;

b = t;

}

while (b != 0) {

t = a-b;

a = b;

b = t;

}

return a;

}

Figure A.22: Gcd

163

lcm(int a, int b) {

int am = a;

int bm = b;

while (am != bm) {

if (am > bm) {

bm = bm+b;

} else {

am = am+a;

}

}

return am;

}

Figure A.23: Lcm

marbie1(int i) {

while (i > 2) {

i++;

}

}

Figure A.24: Marbie1

marbie2(int i) {

while(5<8) {

i++;

}

}

Figure A.25: Marbie2

middle(int i, int j) {

while (i != j) {

i--;

j++;

}

return i;

}

Figure A.26: Middle

mirrorInterv(int i) {

int range = 20;

while (-range <= i & i <= range) {

if (range-i < 5 || range+i < 5) {

i = i*(-1);

} else {

range++;

i--;

if (i == 0) {

range = -1;

}

}

}

}

Figure A.27: MirrorInterv

164 APPENDIX A. WHILE PROGRAMS DATABASE

mirrorIntervSim(int i) {

while (i != 0) {

if (-5 <= i && i <= 35) {

if (i < 0) {

i = -5;

} else {

if (i > 30) {

i = 35;

} else {

i--;

}

}

} else {

i = 0;

}

}

}

Figure A.28: MirrorIntervSim

moduloLower(int n) {

while (n > 2) {

if (n % 5 > 0) {

n--;

}

}

}

Figure A.29: ModuloLower

moduloUp(int n) {

int d = 10;

while (n < 15) {

n++;

n = n % d;

}

}

Figure A.30: ModuloUp

narrowing(int i) {

int range = 20;

boolean up = false;

while (0 <= i && i <= range) {

if (i == 0) {

up = true;

}

if (i == range) {

up = false;

}

if (up) {

i++;

}

if (!up) {

i--;

}

if (i == range-2) {

range--;

}

}

}

Figure A.31: Narrowing

165

narrowKonv(int i) {

int range = 20;

while (0 <= i && i <= range) {

if (!(0 == i && i == range)) {

if (i == range) {

i = 0;

range--;

} else {

i++;

}

}

}

}

Figure A.32: NarrowKonv

plait(int i, int j, int k) {

int plaitNext = 0;

int swap = 0;

while (i > 0 || j > 0 || k > 0) {

if (plaitNext == 0) {

swap = i;

i = j/2;

j = swap*2;

plaitNext = 1;

} else {

swap = k;

k = j*2;

j = swap/2;

plaitNext = 0;

}

}

}

Figure A.33: Plait

sunset(int i) {

while (i > 10) {

if (i == 25) {

i = 30;

}

if (i <= 30) {

i--;

} else {

i = 20;

}

}

}

Figure A.34: Sunset

trueDiv(int i) {

while (true) {

if (i <= 0) {

i--;

} else {

i++;

}

}

}

Figure A.35: TrueDiv

166 APPENDIX A. WHILE PROGRAMS DATABASE

twoFloatInterv(int i) {

while (i > 0 & i < 50) {

if (i < 20) {

i--;

}

if (i > 10) {

i++;

}

if (30 <= i && i <= 40) {

i--;

}

}

}

Figure A.36: TwoFloatInterv

upAndDownIneq(int i) {

int up = 0;

while (0 <= i && i <= 10) {

if (i >= 10) {

up = 0;

}

if (i <= 0) {

up = 1;

}

if (up >= 1) {

i++;

} else {

i--;

}

}

}

Figure A.37: UpAndDownIneq

whileBreak(int i) {

while (i > 10) {

if (i > 20) {

i++;

} else {

i--;

}

if (i == 30) {

break;

}

}

}

Figure A.38: WhileBreak

whileDecr(int i) {

while (i > 5) {

i--;

}

}

Figure A.39: WhileDecr

whileIncr(int i) {

while (i > 0) {

i++;

}

}

Figure A.40: WhileIncr

167

whileIncrPart(int i) {

while (i > 0) {

if (i > 3) {

i++;

} else {

i--;

}

}

}

Figure A.41: WhileIncrPart

whileNested(int i) {

int j;

while (i < 10) {

j = i;

while (j > 0) {

j++;

}

i++;

}

}

Figure A.42: WhileNested

whilePart(int i) {

while (i > 5) {

if (i < 10) {

i--;

}

}

}

Figure A.43: WhilePart

whileSingle(int i) {

while (i < 10) {

if (i != 3) {

i++;

}

}

}

Figure A.44: WhileSingle

whileSum(int i, int j) {

while (i+j > 0) {

i++;

if (j % 2 == 0) {

j = j - 2;

}

}

}

Figure A.45: WhileSum

whileTrue(int i) {

while (true) {

i++;

}

}

Figure A.46: WhileTrue

168 APPENDIX A. WHILE PROGRAMS DATABASE

List of Figures

2.1 Path . 20
2.2 Gauss . 21

3.1 The Collatz program. 26
3.2 StateSpace . 39
3.3 First-order Rules . 44
3.4 First-order Axioms . 44
3.5 Equality Rules . 45
3.6 Rules for Modalities . 46
3.7 Rules for Symbolic Execution . 47
3.8 Loop Rules . 48
3.9 Context . 49
3.10 Invariant Rules with Anonymous Updates 52
3.11 GaussCorrect . 52
3.12 Calculus Rules for the Introduction of Metavariables 59
3.13 Unification Constraints . 62
3.14 Linear Unification Constraints . 62
3.15 The User Interface of the KeY Prover 66

4.1 UpAndDown . 73
4.2 Calculus Rule invRuleInverseRanking 74
4.3 NonLinearSimple . 74
4.4 AlternatingIncr . 75

5.1 Algorithm Sketch . 79
5.2 Algorithm in Java-like code. 80
5.3 Proof Tree of UpAndDown, Part 1 of 3 82
5.4 Proof Tree of UpAndDown, Part 2 of 3 83
5.5 Proof Tree of UpAndDown, Part 3 of 3 84
5.6 UpOrDown . 88
5.7 Refinement of the Invariant for UpOrDown 88
5.8 AlternDivWidening . 90
5.9 InitNotClosed . 91
5.10 Transformation of a Nested Loop into a Single Unnested Loop 97
5.11 WhileNestedOffset . 98
5.12 NestedOuter . 98

169

170 LIST OF FIGURES

6.1 Components of the Software . 102

7.1 Results of all Runs on the Examples - Part 1/2 111
7.2 Results of all Runs on the Examples - Part 2/2 112
7.3 Performance of Different Runs as Graph. 113
7.4 Performance of Different Runs expressed in Characteristics 115
7.5 Applied Creation Methods . 115
7.6 Applied Scoring Methods and their Weights 116
7.7 Ex02 . 117
7.8 AlternKonv . 117
7.9 AlternKonv Value of i over the Iterations. 118
7.10 Factorial . 121

8.1 ChaosBuffer . 128
8.2 Class Rules of the Heap Calculus . 138
8.3 ArraySum . 142
8.4 Traverse . 145
8.5 Takeshi . 148

9.1 A Development Environment in the Future 155

A.1 AlternDiv . 157
A.2 AlternDivWide . 157
A.3 ComplInterv . 158
A.4 ComplInterv2 . 158
A.5 ComplInterv3 . 158
A.6 ComplxStruc . 159
A.7 ConvLower . 160
A.8 Cousot . 160
A.9 DoubleNeg . 160
A.10 Even . 160
A.11 Ex01 . 160
A.12 Ex03 . 160
A.13 Ex04 . 160
A.14 Ex05 . 161
A.15 Ex06 . 161
A.16 Ex07 . 161
A.17 Ex08 . 161
A.18 Ex09Half . 161
A.19 Fib . 162
A.20 Flip . 162
A.21 Flip2 . 162
A.22 Gcd . 162
A.23 Lcm . 163
A.24 Marbie1 . 163
A.25 Marbie2 . 163

LIST OF FIGURES 171

A.26 Middle . 163
A.27 MirrorInterv . 163
A.28 MirrorIntervSim . 164
A.29 ModuloLower . 164
A.30 ModuloUp . 164
A.31 Narrowing . 164
A.32 NarrowKonv . 165
A.33 Plait . 165
A.34 Sunset . 165
A.35 TrueDiv . 165
A.36 TwoFloatInterv . 166
A.37 UpAndDownIneq . 166
A.38 WhileBreak . 166
A.39 WhileDecr . 166
A.40 WhileIncr . 166
A.41 WhileIncrPart . 167
A.42 WhileNested . 167
A.43 WhilePart . 167
A.44 WhileSingle . 167
A.45 WhileSum . 167
A.46 WhileTrue . 167

172 LIST OF FIGURES

Bibliography

[AZ95] T. Arts and H. Zantema. Termination of logic programs using semantic
unification. In In Proceedings of the Fifth Workshop on Logic Program
Synthesis and Transformation, LNCS, pages 219–233. Springer–Verlag,
1995.

[BBM97] N. Bjørner, A. Browne, and Z. Manna. Automatic generation of in-
variants and intermediate assertions. Theoretical Computer Science,
173(1):49–87, 1997.

[BHS07] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag,
2007.

[BL99] S. Bensalem and Y. Lakhnech. Automatic generation of invariants. For-
mal Methods in System Design, 15(1):75–92, 1999.

[Bou92] R. T. Boute. The Euclidean definition of the functions div and mod.
ACM Transactions on Programming Languages and Systems, 14(2):127–
144, 1992.

[BP06] B. Beckert and A. Platzer. Dynamic logic with non-rigid functions:
A basis for object-oriented program verification. In U. Furbach and
N. Shankar, editors, Proceedings, International Joint Conference on Au-
tomated Reasoning, Seattle, USA, LNCS 4130, pages 266–280. Springer,
2006.

[BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 8, pages 445–532. Elsevier Science, 2001.

[BS04] B. Beckert and S. Schlager. Software verification with integrated data
type refinement for integer arithmetic. In Proceedings, International
Conference on Integrated Formal Methods, Canterbury, UK, LNCS 2999,
pages 207–226. Springer, 2004.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

173

174 BIBLIOGRAPHY

ming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New
York, NY.

[Che00] Z. Chen. Java Card Technology for Smart Cards: Architecture and
Programmer’s Guide. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[CPR] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond
safety. In CAV ’06, Proceedings of the 18th International Conference
on Computer-Aided Verification, pages 415–418.

[CS01] M. Colón and H. Sipma. Synthesis of linear ranking functions. In TACAS
2001: Proceedings of the 7th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 67–81,
London, UK, 2001. Springer-Verlag.

[CS02] M. Colón and H. Sipma. Practical methods for proving program ter-
mination. In CAV ’02: Proceedings of the 14th International Confer-
ence on Computer Aided Verification, pages 442–454, London, UK, 2002.
Springer-Verlag.

[Fit96] M. Fitting. First-order logic and automated theorem proving (2nd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[Gie01] M. Giese. Incremental closure of free variable tableaux. In IJCAR ’01:
Proceedings of the First International Joint Conference on Automated
Reasoning, pages 545–560, London, UK, 2001. Springer-Verlag.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Speci-
fication, Second Edition: The Java Series. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2005.

[Göd31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte für Mathematik und Physik,
38:173–198, 1931.

[GSKT05] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Proving and disprov-
ing termination of higher-order functions. In FroCoS ’05: Proceedings
of the 5th International Workshop on Frontiers of Combining Systems,
Vienna, Austria, volume 3717 of Lecture Notes in Artificial Intelligence,
pages 216–231, 2005.

[GSKT06] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Auto-
matic termination proofs in the dependency pair framework. In IJCAR
’06: Proceedings of the 3rd International Joint Conference on Automated
Reasoning, Seattle, USA, volume 4130 of Lecture Notes in Artificial In-
telligence, pages 281–286, London, UK, 2006. Springer-Verlag.

BIBLIOGRAPHY 175

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press,
Cambridge, Massachusetts, London, 2000.

[HPRW06] R. Hähnle, J. Pan, P. Rümmer, and D. Walter. Integration of a security
type system into a program logic. In TGC ’06: Proceedings 2nd Sym-
posium on Trustworthy Global Computing, Lucca, Italy, LNCS, London,
UK, 2006. Springer-Verlag.

[Käu05] C. Käunicke. Automatic termination analysis of logic programs, 2005.
Diploma Thesis, RWTH Aachen, Germany.

[Kin76] J. C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[Lei05] K. Rustan M. Leino. Invariants on demand. In SEFM ’05: Proceedings of
the Third IEEE International Conference on Software Engineering and
Formal Methods, pages 148–149, Washington, DC, USA, 2005. IEEE
Computer Society.

[MZ07] C. Marché and H. Zantema. The termination competition 2007. 2007.
http://www.lri.fr/�marche/termination-competition/.

[Pre91] M. Pressburger. On the completeness of a certain sysetm of arithmetic of
whole numbers in which addition occurs as the only operation (reprint),
volume 12. Hist. Philos. Logic, 1991.

[PSS97] S. E. Panitz and M. Schmidt-Schauß. TEA: Automatically proving ter-
mination of programs in a non-strict higher-order functional language. In
Proceedings of the 4th International Static Analysis Symposium, Paris,
LNCS 1302, pages 345–360, 1997.

[RCK04] E. Rodŕıguez-Carbonell and D. Kapur. Automatic generation of poly-
nomial loop invariants: Algebraic foundations. In International Sympo-
sium on Symbolic and Algebraic Computation 2004 (ISSAC04), pages
266–273. ACM Press, 2004.

[RS07] P. Rümmer and M. A. Shah. Proving programs incorrect using a sequent
calculus for Java Dynamic Logic. In International Conference on Tests
And Proofs (TAP), London, UK, 2007. Springer-Verlag. To appear.

[Rüm06] P. Rümmer. Sequential, parallel, and quantified updates of first-order
structures. In Logic for Programming, Artificial Intelligence and Reason-
ing, volume 4246, pages 422–436, London, UK, 2006. Springer-Verlag.

[Rüm07] P. Rümmer. A sequent calculus for integer arithmetic with counterexam-
ple generation. In VERIFY’07: 4th International Verification Workshop
at CADE 21, Bremen, Germany, 2007. http://sunsite.informatik.
rwth-aachen.de/Publications/CEUR-WS/Vol-259/.

176 BIBLIOGRAPHY

[Rüm08] P. Rümmer. Notes on constraints in non-destructive first-order calculi.
2008. To appear.

[Son06] M. Sondermann. Automatische Terminierungsanalyse von imperativen
Programmen, 2006. Diploma Thesis, RWTH Aachen, Germany.

[Swi05] S. Swiderski. Terminierungsanalyse von Haskellprogrammen, 2005.
Diploma Thesis, RWTH Aachen, Germany.

[Tur36] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230–265, 1936.

[Wei07] B. Weiß. Inferring invariants by static analysis in KeY, 2007. Diploma
Thesis, University of Karlsruhe, Germany.

